skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic rotation drive by collisionless trapped electron mode turbulence

Abstract

For this work, both the parallel residual stress and parallel turbulent acceleration driven by electrostatic collisionless trapped electron mode (CTEM) turbulence are calculated analytically using gyrokinetic theory. Quasilinear results show that the parallel residual stress contributes an outward flux of co-current rotation for normal magnetic shear and turbulence intensity profile increasing outward. This may induce intrinsic counter-current rotation or flattening of the co-current rotation profile. The parallel turbulent acceleration driven by CTEM turbulence vanishes, due to the absence of a phase shift between density fluctuation and ion pressure fluctuation. This is different from the case of ion temperature gradient turbulence, for which the turbulent acceleration can provide co-current drive for normal magnetic shear and turbulence intensity profile increasing outward. Its order of magnitude is predicted to be the same as that of the divergence of the residual stress [L. Wang and P. H. Diamond, Phys. Rev. Lett. 110, 265006 (2013)]. A possible connection of these theoretical results to experimental observations of electron cyclotron heating effects on toroidal rotation is discussed.

Authors:
 [1];  [1];  [2]
  1. Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Advanced Electromagnetic Engineering and Technology and School of Electrical and Electronic Engineering
  2. Univ. of California, San Diego, CA (United States). Center for Momentum Transport and Flow Organization and Center for Astrophysics and Space Sciences
Publication Date:
Research Org.:
Univ. of California, San Diego, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); National Natural Science Foundation of China (NNSFC); Ministry of Science and Technology (MOST) (China)
OSTI Identifier:
1470761
Alternate Identifier(s):
OSTI ID: 1249679
Grant/Contract Number:  
FG02-04ER54738; 11305071; 2013GB112002
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; gyrokinetic simulations; plasma confinement; plasma heating; tokamaks; Newtonian mechanics; electric dipole moments; leptons; turbulence simulations; plasma instabilities; quasilinear theory

Citation Formats

Wang, Lu, Peng, Shuitao, and Diamond, P. H. Intrinsic rotation drive by collisionless trapped electron mode turbulence. United States: N. p., 2016. Web. doi:10.1063/1.4947206.
Wang, Lu, Peng, Shuitao, & Diamond, P. H. Intrinsic rotation drive by collisionless trapped electron mode turbulence. United States. doi:10.1063/1.4947206.
Wang, Lu, Peng, Shuitao, and Diamond, P. H. Fri . "Intrinsic rotation drive by collisionless trapped electron mode turbulence". United States. doi:10.1063/1.4947206. https://www.osti.gov/servlets/purl/1470761.
@article{osti_1470761,
title = {Intrinsic rotation drive by collisionless trapped electron mode turbulence},
author = {Wang, Lu and Peng, Shuitao and Diamond, P. H.},
abstractNote = {For this work, both the parallel residual stress and parallel turbulent acceleration driven by electrostatic collisionless trapped electron mode (CTEM) turbulence are calculated analytically using gyrokinetic theory. Quasilinear results show that the parallel residual stress contributes an outward flux of co-current rotation for normal magnetic shear and turbulence intensity profile increasing outward. This may induce intrinsic counter-current rotation or flattening of the co-current rotation profile. The parallel turbulent acceleration driven by CTEM turbulence vanishes, due to the absence of a phase shift between density fluctuation and ion pressure fluctuation. This is different from the case of ion temperature gradient turbulence, for which the turbulent acceleration can provide co-current drive for normal magnetic shear and turbulence intensity profile increasing outward. Its order of magnitude is predicted to be the same as that of the divergence of the residual stress [L. Wang and P. H. Diamond, Phys. Rev. Lett. 110, 265006 (2013)]. A possible connection of these theoretical results to experimental observations of electron cyclotron heating effects on toroidal rotation is discussed.},
doi = {10.1063/1.4947206},
journal = {Physics of Plasmas},
number = 4,
volume = 23,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nonlinear gyrokinetic equations for tokamak microturbulence
journal, September 1988


Nonlinear gyrokinetic theory of toroidal momentum pinch
journal, July 2007

  • Hahm, T. S.; Diamond, P. H.; Gurcan, O. D.
  • Physics of Plasmas, Vol. 14, Issue 7
  • DOI: 10.1063/1.2743642

Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas
journal, March 2009


Anomalous electron-ion energy exchange from the trapped electron mode
journal, January 1977

  • Manheimer, Wallace M.; Ott, E.; Tang, W. M.
  • Physics of Fluids, Vol. 20, Issue 5
  • DOI: 10.1063/1.861951

Weak turbulence theory of collisionless trapped electron driven drift instability in tokamaks
journal, April 1991

  • Hahm, T. S.; Tang, W. M.
  • Physics of Fluids B: Plasma Physics, Vol. 3, Issue 4
  • DOI: 10.1063/1.859854

Intrinsic rotation and electric field shear
journal, April 2007

  • Gürcan, Ö. D.; Diamond, P. H.; Hahm, T. S.
  • Physics of Plasmas, Vol. 14, Issue 4
  • DOI: 10.1063/1.2717891

Intrinsic rotation in DIII-D
journal, May 2007

  • deGrassie, J. S.; Rice, J. E.; Burrell, K. H.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2539055

Energetic consistency and momentum conservation in the gyrokinetic description of tokamak plasmas
journal, November 2010

  • Scott, B.; Smirnov, J.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3507920

Gyrokinetic Theory of Turbulent Acceleration of Parallel Rotation in Tokamak Plasmas
journal, June 2013


Residual parallel Reynolds stress due to turbulence intensity gradient in tokamak plasmas
journal, November 2010

  • Gürcan, Ö. D.; Diamond, P. H.; Hennequin, P.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3503624

Linear gyrokinetic calculations of toroidal momentum transport in a tokamak due to the ion temperature gradient mode
journal, July 2005

  • Peeters, A. G.; Angioni, C.
  • Physics of Plasmas, Vol. 12, Issue 7
  • DOI: 10.1063/1.1949608

Intrinsic Toroidal Rotation, Density Peaking, and Turbulence Regimes in the Core of Tokamak Plasmas
journal, November 2011


Effect of electron cyclotron resonance heating (ECRH) on toroidal rotation in ASDEX Upgrade H-mode discharges
journal, January 2011


Conservation equations and calculation of mean flows in gyrokinetics
journal, August 2011

  • Abiteboul, J.; Garbet, X.; Grandgirard, V.
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3620407

Core momentum and particle transport studies in the ASDEX Upgrade tokamak
journal, November 2011


Kinetic theory of the turbulent energy pinch in tokamak plasmas
journal, June 2011


Momentum balance and radial electric fields in axisymmetric and nonaxisymmetric toroidal plasmas
journal, January 2011


An overview of intrinsic torque and momentum transport bifurcations in toroidal plasmas
journal, September 2013


Exact momentum conservation laws for the gyrokinetic Vlasov-Poisson equations
journal, August 2011

  • Brizard, Alain J.; Tronko, Natalia
  • Physics of Plasmas, Vol. 18, Issue 8
  • DOI: 10.1063/1.3625554

Rotation and momentum transport in tokamaks and helical systems
journal, March 2014


APTWG: The 4th Asia-Pacific Transport Working Group Meeting
journal, December 2014


Electrostatic instabilities in current-carrying and counterstreaming plasmas
journal, January 1964

  • Stringer, T. E.
  • Journal of Nuclear Energy. Part C, Plasma Physics, Accelerators, Thermonuclear Research, Vol. 6, Issue 3
  • DOI: 10.1088/0368-3281/6/3/305

Nonlinear flow generation by electrostatic turbulence in tokamaks
journal, July 2010

  • Wang, W. X.; Diamond, P. H.; Hahm, T. S.
  • Physics of Plasmas, Vol. 17, Issue 7
  • DOI: 10.1063/1.3459096

Response of toroidal rotation velocity to electron cyclotron wave injection in JT-60U
journal, April 2006


Anomalous momentum transport from drift wave turbulence
journal, November 1993

  • Dominguez, R. R.; Staebler, G. M.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 11
  • DOI: 10.1063/1.860610

ECH effects on toroidal rotation: KSTAR experiments, intrinsic torque modelling and gyrokinetic stability analyses
journal, October 2013


Turbulent acceleration and heating in toroidal magnetized plasmas
journal, July 2013

  • Garbet, X.; Esteve, D.; Sarazin, Y.
  • Physics of Plasmas, Vol. 20, Issue 7
  • DOI: 10.1063/1.4816021

Destabilization of the trapped-electron mode by magnetic curvature drift resonances
journal, January 1976

  • Adam, J. C.; Tang, W. M.; Rutherford, P. H.
  • Physics of Fluids, Vol. 19, Issue 4
  • DOI: 10.1063/1.861489

Stability Analysis of Resistive Wall Kink Modes in Rotating Plasmas
journal, April 1995


Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence
journal, August 2012

  • Zhao, L.; Diamond, P. H.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4746033

Drift waves and transport
journal, April 1999


Stabilization of external modes in tokamaks by resistive walls and plasma rotation
journal, April 1994


On the efficiency of intrinsic rotation generation in tokamaks
journal, October 2010

  • Kosuga, Y.; Diamond, P. H.; Gürcan, Ö. D.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3496055

Toroidal rotation in DIII-D in electron cyclotron heating and Ohmic H-mode discharges
journal, September 2004

  • deGrassie, J. S.; Burrell, K. H.; Baylor, L. R.
  • Physics of Plasmas, Vol. 11, Issue 9
  • DOI: 10.1063/1.1778751

Toroidal rotation profile structure in KSTAR L-mode plasmas with mixed heating by NBI and ECH
journal, December 2015


Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows
journal, July 1998

  • Sugama, H.; Horton, W.
  • Physics of Plasmas, Vol. 5, Issue 7
  • DOI: 10.1063/1.872941

Physics of intrinsic rotation in flux-driven ITG turbulence
journal, April 2012


Up-down symmetry of the turbulent transport of toroidal angular momentum in tokamaks
journal, June 2011

  • Parra, Felix I.; Barnes, Michael; Peeters, Arthur G.
  • Physics of Plasmas, Vol. 18, Issue 6
  • DOI: 10.1063/1.3586332

A novel mechanism for exciting intrinsic toroidal rotation
journal, May 2009

  • McDevitt, C. J.; Diamond, P. H.; Gürcan, Ö. D.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3122048

Rotation Drive and Momentum Transport with Electron Cyclotron Heating in Tokamak Plasmas
journal, August 2009


Transport of momentum in full f gyrokinetics
journal, May 2010

  • Parra, Felix I.; Catto, Peter J.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3327127

Plasma dynamics with second and third-harmonic ECRH and access to quasi-stationary ELM-free H-mode on TCV
journal, August 2007


Transport of parallel momentum by collisionless drift wave turbulence
journal, January 2008

  • Diamond, P. H.; McDevitt, C. J.; Gürcan, Ö. D.
  • Physics of Plasmas, Vol. 15, Issue 1
  • DOI: 10.1063/1.2826436