skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D Wettable Framework for Dendrite-Free Alkali Metal Anodes

Abstract

The infinite volume change and dendritic behavior in alkali metal anodes lead to low Coulombic efficiency and short-circuit issues that significantly hamper renewed efforts at commercialization. In this study, a dendrite-free alkali metal anode, made by thermally preloading molten Li or Na into a 3D framework with high alkali wettability, is reported. In the mechanically robust 3D framework, carbon fiber (CF) serves as an electrical highway that provides fast charge transfer for the redox reaction. Through a facile solution-based process, a SnO2 coating is introduced to modify the poor wetting behavior of the carbon framework and drastically improve both the electrochemical performance and reliability. The kinetic barrier to adhesion of molten alkali metals on the CF framework is eliminated by the mixed reaction with SnO2. The growth of dendrites is effectively repressed under the decreased local current density of the 3D framework. In full-cell configurations with LiFePO4 cathodes, the Li–CF electrode shows reduced polarization and 90% capacity retention after 500 cycles in traditional carbonate electrolyte. Comparable improvements are also observed in 3D electrodes for Na metal batteries. These findings on a stable 3D carbon framework with improved wetting behavior provide significant practical implications for achieving safe and commercially viable alkalimore » metal anodes.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of Maryland, College Park, MD (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC), Washington, DC (United States). Nanostructures for Electrical Energy Storage (NEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470662
Alternate Identifier(s):
OSTI ID: 1436545
Grant/Contract Number:  
SC0001160
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 8; Journal Issue: 18; Related Information: NEES partners with University of Maryland (lead); University of California, Irvine; University of Florida; Los Alamos National Laboratory; Sandia National Laboratories; Yale University; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; bio-inspired; energy storage (including batteries and capacitors); defects; charge transport; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing); 3D frameworks; dendrite-free; lithium metal anodes; sodium metal anodes; thermal infusion

Citation Formats

Zhang, Ying, Wang, Chengwei, Pastel, Glenn, Kuang, Yudi, Xie, Hua, Li, Yiju, Liu, Boyang, Luo, Wei, Chen, Chaoji, and Hu, Liangbing. 3D Wettable Framework for Dendrite-Free Alkali Metal Anodes. United States: N. p., 2018. Web. doi:10.1002/aenm.201800635.
Zhang, Ying, Wang, Chengwei, Pastel, Glenn, Kuang, Yudi, Xie, Hua, Li, Yiju, Liu, Boyang, Luo, Wei, Chen, Chaoji, & Hu, Liangbing. 3D Wettable Framework for Dendrite-Free Alkali Metal Anodes. United States. doi:10.1002/aenm.201800635.
Zhang, Ying, Wang, Chengwei, Pastel, Glenn, Kuang, Yudi, Xie, Hua, Li, Yiju, Liu, Boyang, Luo, Wei, Chen, Chaoji, and Hu, Liangbing. Wed . "3D Wettable Framework for Dendrite-Free Alkali Metal Anodes". United States. doi:10.1002/aenm.201800635. https://www.osti.gov/servlets/purl/1470662.
@article{osti_1470662,
title = {3D Wettable Framework for Dendrite-Free Alkali Metal Anodes},
author = {Zhang, Ying and Wang, Chengwei and Pastel, Glenn and Kuang, Yudi and Xie, Hua and Li, Yiju and Liu, Boyang and Luo, Wei and Chen, Chaoji and Hu, Liangbing},
abstractNote = {The infinite volume change and dendritic behavior in alkali metal anodes lead to low Coulombic efficiency and short-circuit issues that significantly hamper renewed efforts at commercialization. In this study, a dendrite-free alkali metal anode, made by thermally preloading molten Li or Na into a 3D framework with high alkali wettability, is reported. In the mechanically robust 3D framework, carbon fiber (CF) serves as an electrical highway that provides fast charge transfer for the redox reaction. Through a facile solution-based process, a SnO2 coating is introduced to modify the poor wetting behavior of the carbon framework and drastically improve both the electrochemical performance and reliability. The kinetic barrier to adhesion of molten alkali metals on the CF framework is eliminated by the mixed reaction with SnO2. The growth of dendrites is effectively repressed under the decreased local current density of the 3D framework. In full-cell configurations with LiFePO4 cathodes, the Li–CF electrode shows reduced polarization and 90% capacity retention after 500 cycles in traditional carbonate electrolyte. Comparable improvements are also observed in 3D electrodes for Na metal batteries. These findings on a stable 3D carbon framework with improved wetting behavior provide significant practical implications for achieving safe and commercially viable alkali metal anodes.},
doi = {10.1002/aenm.201800635},
journal = {Advanced Energy Materials},
number = 18,
volume = 8,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Rechargeable Batteries: Grasping for the Limits of Chemistry
journal, January 2015

  • Berg, Erik J.; Villevieille, Claire; Streich, Daniel
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0081514jes

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Enabling room temperature sodium metal batteries
journal, December 2016


A reversible dendrite-free high-areal-capacity lithium metal electrode
journal, April 2017

  • Wang, Hui; Matsui, Masaki; Kuwata, Hiroko
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15106

Synthesis, Characterization, and Structural Modeling of High-Capacity, Dual Functioning MnO 2 Electrode/Electrocatalysts for Li-O 2 Cells
journal, July 2012

  • Trahey, Lynn; Karan, Naba K.; Chan, Maria K. Y.
  • Advanced Energy Materials, Vol. 3, Issue 1
  • DOI: 10.1002/aenm.201200037

Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes
journal, December 2016


Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices
journal, August 2008


Anodes for Rechargeable Lithium-Sulfur Batteries
journal, April 2015


Spatially heterogeneous carbon-fiber papers as surface dendrite-free current collectors for lithium deposition
journal, February 2012


A rechargeable room-temperature sodium superoxide (NaO2) battery
journal, December 2012

  • Hartmann, Pascal; Bender, Conrad L.; Vračar, Miloš
  • Nature Materials, Vol. 12, Issue 3, p. 228-232
  • DOI: 10.1038/nmat3486

Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cut-and-Transfer Strategy
journal, September 2016

  • Jiang, Qiu; Kurra, Narendra; Xia, Chuan
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601257

Self-diffusion in solid lithium
journal, October 2010


Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy
journal, October 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Nanodiamonds suppress the growth of lithium dendrites
journal, August 2017


Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance
journal, October 2017


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Nanostructured Ternary Electrodes for Energy-Storage Applications
journal, February 2012

  • Rakhi, Raghavan Baby; Chen, Wei; Cha, Dongkyu
  • Advanced Energy Materials, Vol. 2, Issue 3
  • DOI: 10.1002/aenm.201100609

Advanced Porous Carbon Materials for High-Efficient Lithium Metal Anodes
journal, July 2017


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode
journal, February 2018

  • Fan, Lei; Zhuang, Houlong L.; Zhang, Weidong
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703360

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

A soft non-porous separator and its effectiveness in stabilizing Li metal anodes cycling at 10 mA cm −2 observed in situ in a capillary cell
journal, January 2017

  • Liu, Kai; Bai, Peng; Bazant, Martin Z.
  • Journal of Materials Chemistry A, Vol. 5, Issue 9
  • DOI: 10.1039/C7TA00069C

Ultrathin Surface Coating Enables the Stable Sodium Metal Anode
journal, September 2016

  • Luo, Wei; Lin, Chuan-Fu; Zhao, Oliver
  • Advanced Energy Materials, Vol. 7, Issue 2
  • DOI: 10.1002/aenm.201601526

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries
journal, July 2017


Three-Dimensional Battery Architectures
journal, October 2004

  • Long, Jeffrey W.; Dunn, Bruce; Rolison, Debra R.
  • Chemical Reviews, Vol. 104, Issue 10, p. 4463-4492
  • DOI: 10.1021/cr020740l

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
journal, January 2017


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating
journal, February 2016

  • Liang, Zheng; Lin, Dingchang; Zhao, Jie
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 11
  • DOI: 10.1073/pnas.1518188113

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes
journal, May 2017

  • Zhang, Rui; Chen, Xiao-Ru; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 56, Issue 27
  • DOI: 10.1002/anie.201702099

Electrical Energy Storage and Intercalation Chemistry
journal, June 1976


Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode
journal, May 2017

  • Chi, Shang-Sen; Liu, Yongchang; Song, Wei-Li
  • Advanced Functional Materials, Vol. 27, Issue 24
  • DOI: 10.1002/adfm.201700348

Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High-Performance Lithium-Metal Battery Anodes
journal, October 2016


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Metallic anodes for next generation secondary batteries
journal, January 2013

  • Kim, Hansu; Jeong, Goojin; Kim, Young-Ugk
  • Chemical Society Reviews, Vol. 42, Issue 23
  • DOI: 10.1039/c3cs60177c

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism
journal, March 2013

  • Ding, Fei; Xu, Wu; Graff, Gordon L.
  • Journal of the American Chemical Society, Vol. 135, Issue 11, p. 4450-4456
  • DOI: 10.1021/ja312241y

Thermodynamic assessment of the Li–Sn (Lithium–Tin) system
journal, May 2005


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes
journal, September 2014

  • Lu, Dongping; Shao, Yuyan; Lozano, Terence
  • Advanced Energy Materials, Vol. 5, Issue 3
  • DOI: 10.1002/aenm.201400993

Superior Stable and Long Life Sodium Metal Anodes Achieved by Atomic Layer Deposition
journal, March 2017

  • Zhao, Yang; Goncharova, Lyudmila V.; Lushington, Andrew
  • Advanced Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adma.201606663

Ordered Mesoporous Titanium Nitride as a Promising Carbon-Free Cathode for Aprotic Lithium-Oxygen Batteries
journal, January 2017


A carbon-based 3D current collector with surface protection for Li metal anode
journal, March 2017


The role of nanotechnology in the development of battery materials for electric vehicles
journal, December 2016


Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth
journal, January 2016

  • Zhang, Rui; Cheng, Xin-Bing; Zhao, Chen-Zi
  • Advanced Materials, Vol. 28, Issue 11
  • DOI: 10.1002/adma.201504117

Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer
journal, March 2017

  • Liu, Kai; Pei, Allen; Lee, Hye Ryoung
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.6b13314

All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance
journal, January 2017

  • Chen, Chaoji; Zhang, Ying; Li, Yiju
  • Energy & Environmental Science, Vol. 10, Issue 2
  • DOI: 10.1039/C6EE03716J

A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries
journal, May 2009

  • Ji, Xiulei; Lee, Kyu Tae; Nazar, Linda F.
  • Nature Materials, Vol. 8, Issue 6, p. 500-506
  • DOI: 10.1038/nmat2460

Rechargeable Room-Temperature Na-CO 2 Batteries
journal, April 2016

  • Hu, Xiaofei; Sun, Jianchao; Li, Zifan
  • Angewandte Chemie International Edition, Vol. 55, Issue 22
  • DOI: 10.1002/anie.201602504

Highly Conductive, Lightweight, Low-Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors
journal, May 2017


A High-Energy Room-Temperature Sodium-Sulfur Battery
journal, December 2013


High-capacity, low-tortuosity, and channel-guided lithium metal anode
journal, March 2017

  • Zhang, Ying; Luo, Wei; Wang, Chengwei
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 14
  • DOI: 10.1073/pnas.1618871114

Density functional theory study of diffusion of lithium in Li–Sn alloys
journal, December 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

A Material Perspective of Rechargeable Metallic Lithium Anodes
journal, February 2018


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

    Works referencing / citing this record:

    Facile Generation of Polymer-Alloy Hybrid Layers for Dendrite-Free Lithium-Metal Anodes with Improved Moisture Stability
    journal, July 2019

    • Jiang, Zhipeng; Jin, Liu; Han, Zhilong
    • Angewandte Chemie International Edition, Vol. 58, Issue 33
    • DOI: 10.1002/anie.201905712

    Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite‐Free Metallic Lithium Anodes
    journal, June 2019


    Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendrite‐Free Metallic Lithium Anodes
    journal, June 2019


    Facile Generation of Polymer-Alloy Hybrid Layers for Dendrite-Free Lithium-Metal Anodes with Improved Moisture Stability
    journal, July 2019

    • Jiang, Zhipeng; Jin, Liu; Han, Zhilong
    • Angewandte Chemie International Edition, Vol. 58, Issue 33
    • DOI: 10.1002/anie.201905712