DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrogenation properties of lithium and sodium hydride – closo -borate, [B 10 H 10 ] 2− and [B 12 H 12 ] 2− , composites

Abstract

The hydrogen absorption properties of metal closo-borate metal hydride composites, M2B10H10– 8MH and M2B12H12–10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in-situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex-situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in-situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. The M2B12H12–10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10– 8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1:0.63 and 1:0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B:H ratio close to 1:1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- compounds, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogenmore » capacity metal borohydrides for hydrogen storage.« less

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Center for Materials Crystallography, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
  2. Chemistry, Combustion, and Materials Center, Sandia National Laboratories, Livermore, USA
  3. Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Sustainable Transportation Office. Hydrogen Fuel Cell Technologies Office (HFTO)
OSTI Identifier:
1470579
Alternate Identifier(s):
OSTI ID: 1429663; OSTI ID: 1440264; OSTI ID: 1444088
Report Number(s):
SAND-2017-11502J; SAND-2018-6006J
Journal ID: ISSN 1463-9076; PPCPFQ
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Published Article
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP Journal Volume: 20 Journal Issue: 23; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 08 HYDROGEN

Citation Formats

Jensen, Steffen R. H., Paskevicius, Mark, Hansen, Bjarne R. S., Jakobsen, Anders S., Møller, Kasper T., White, James L., Allendorf, Mark D., Stavila, Vitalie, Skibsted, Jørgen, and Jensen, Torben R. Hydrogenation properties of lithium and sodium hydride – closo -borate, [B 10 H 10 ] 2− and [B 12 H 12 ] 2− , composites. United Kingdom: N. p., 2018. Web. doi:10.1039/C7CP07776A.
Jensen, Steffen R. H., Paskevicius, Mark, Hansen, Bjarne R. S., Jakobsen, Anders S., Møller, Kasper T., White, James L., Allendorf, Mark D., Stavila, Vitalie, Skibsted, Jørgen, & Jensen, Torben R. Hydrogenation properties of lithium and sodium hydride – closo -borate, [B 10 H 10 ] 2− and [B 12 H 12 ] 2− , composites. United Kingdom. https://doi.org/10.1039/C7CP07776A
Jensen, Steffen R. H., Paskevicius, Mark, Hansen, Bjarne R. S., Jakobsen, Anders S., Møller, Kasper T., White, James L., Allendorf, Mark D., Stavila, Vitalie, Skibsted, Jørgen, and Jensen, Torben R. Mon . "Hydrogenation properties of lithium and sodium hydride – closo -borate, [B 10 H 10 ] 2− and [B 12 H 12 ] 2− , composites". United Kingdom. https://doi.org/10.1039/C7CP07776A.
@article{osti_1470579,
title = {Hydrogenation properties of lithium and sodium hydride – closo -borate, [B 10 H 10 ] 2− and [B 12 H 12 ] 2− , composites},
author = {Jensen, Steffen R. H. and Paskevicius, Mark and Hansen, Bjarne R. S. and Jakobsen, Anders S. and Møller, Kasper T. and White, James L. and Allendorf, Mark D. and Stavila, Vitalie and Skibsted, Jørgen and Jensen, Torben R.},
abstractNote = {The hydrogen absorption properties of metal closo-borate metal hydride composites, M2B10H10– 8MH and M2B12H12–10MH, M = Li or Na, are studied under high hydrogen pressures to understand the formation mechanism of metal borohydrides. The hydrogen storage properties of the composites have been investigated by in-situ synchrotron radiation powder X-ray diffraction at p(H2) = 400 bar and by ex-situ hydrogen absorption measurements at p(H2) = 526 to 998 bar. The in-situ experiments reveal the formation of crystalline intermediates before metal borohydrides (MBH4) are formed. The M2B12H12–10MH (M = Li and Na) systems show no formation of the metal borohydride at T = 400 °C and p(H2) = 537 to 970 bar. 11B MAS NMR of the M2B10H10– 8MH composites reveal that the molar ratio of LiBH4 or NaBH4 and the remaining B species is 1:0.63 and 1:0.21, respectively. Solution and solid-state 11B NMR spectra reveal new intermediates with a B:H ratio close to 1:1. Our results indicate that the M2B10H10 (M = Li, Na) salts display a higher reactivity towards hydrogen in the presence of metal hydrides compared to the corresponding [B12H12]2- compounds, which represents an important step towards understanding the factors that determine the stability and reversibility of high hydrogen capacity metal borohydrides for hydrogen storage.},
doi = {10.1039/C7CP07776A},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 23,
volume = 20,
place = {United Kingdom},
year = {Mon Jan 01 00:00:00 EST 2018},
month = {Mon Jan 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C7CP07776A

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Overview of the hydrogenated samples. The total pressure allows calculation of hydrogen H2 uptake (Δm/m). Unidentified compounds are denoted, 1, 2, 3, or 4.

Save / Share:

Works referenced in this record:

Probing the structure, stability and hydrogen storage properties of calcium dodecahydro-closo-dodecaborate
journal, May 2010


Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art
journal, June 2015


Recent Progress in Metal Borohydrides for Hydrogen Storage
journal, January 2011

  • Li, Hai-Wen; Yan, Yigang; Orimo, Shin-ichi
  • Energies, Vol. 4, Issue 1
  • DOI: 10.3390/en4010185

In situ X-ray diffraction environments for high-pressure reactions
journal, July 2015

  • Hansen, Bjarne R. S.; Møller, Kasper T.; Paskevicius, Mark
  • Journal of Applied Crystallography, Vol. 48, Issue 4
  • DOI: 10.1107/S1600576715011735

Role of Li 2 B 12 H 12 for the Formation and Decomposition of LiBH 4
journal, May 2010

  • Friedrichs, O.; Remhof, A.; Hwang, S. -J.
  • Chemistry of Materials, Vol. 22, Issue 10
  • DOI: 10.1021/cm100536a

Exceptional Superionic Conductivity in Disordered Sodium Decahydro- closo -decaborate
journal, October 2014

  • Udovic, Terrence J.; Matsuo, Motoaki; Tang, Wan Si
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403157

Structure and properties of complex hydride perovskite materials
journal, December 2014

  • Schouwink, Pascal; Ley, Morten B.; Tissot, Antoine
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6706

Tetrahydroborates: Development and Potential as Hydrogen Storage Medium
journal, October 2017


Chemistry of Boranes. VIII. Salts and Acids of B 10 H 10 -2 and B 12 12 -2
journal, March 1964

  • Muetterties, E. L.; Balthis, J. H.; Chia, Y. T.
  • Inorganic Chemistry, Vol. 3, Issue 3
  • DOI: 10.1021/ic50013a030

The role of MgB 12 H 12 in the hydrogen desorption process of Mg(BH 4 ) 2
journal, January 2015

  • Yan, Yigang; Remhof, Arndt; Rentsch, Daniel
  • Chemical Communications, Vol. 51, Issue 4
  • DOI: 10.1039/C4CC05266H

Trimetallic Borohydride Li 3 MZn 5 (BH 4 ) 15 (M = Mg, Mn) Containing Two Weakly Interconnected Frameworks
journal, August 2013

  • Černý, Radovan; Schouwink, Pascal; Sadikin, Yolanda
  • Inorganic Chemistry, Vol. 52, Issue 17
  • DOI: 10.1021/ic401139k

Theoretical Prediction of Metastable Intermediates in the Decomposition of Mg(BH 4 ) 2
journal, May 2012

  • Zhang, Yongsheng; Majzoub, Eric; Ozoliņš, Vidvuds
  • The Journal of Physical Chemistry C, Vol. 116, Issue 19
  • DOI: 10.1021/jp302303z

First-principles calculated decomposition pathways for LiBH4 nanoclusters
journal, May 2016

  • Huang, Zhi-Quan; Chen, Wei-Chih; Chuang, Feng-Chuan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26056

Al3Li4(BH4)13: A Complex Double-Cation Borohydride with a New Structure
journal, June 2010

  • Lindemann, Inge; Domènech Ferrer, Roger; Dunsch, Lothar
  • Chemistry - A European Journal, Vol. 16, Issue 29
  • DOI: 10.1002/chem.201000831

Understanding and Mitigating the Effects of Stable Dodecahydro- closo -dodecaborate Intermediates on Hydrogen-Storage Reactions
journal, November 2016

  • White, James L.; Newhouse, Rebecca J.; Zhang, Jin Z.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 45
  • DOI: 10.1021/acs.jpcc.6b09789

The versatile chemistry of the [B20H18]2– ions: novel reactions and structural motifs
journal, February 2002

  • Hawthorne, M. Frederick; Shelly, Kenneth; Li, Fangbiao
  • Chemical Communications, Issue 6
  • DOI: 10.1039/b110076a

Thermal Decomposition of Anhydrous Alkali Metal Dodecaborates M2B12H12 (M = Li, Na, K)
journal, November 2015

  • He, Liqing; Li, Hai-Wen; Akiba, Etsuo
  • Energies, Vol. 8, Issue 11
  • DOI: 10.3390/en81112326

Stability and Decomposition of NaBH 4
journal, March 2010

  • Martelli, Pascal; Caputo, Riccarda; Remhof, Arndt
  • The Journal of Physical Chemistry C, Vol. 114, Issue 15
  • DOI: 10.1021/jp909341z

Boron–nitrogen based hydrides and reactive composites for hydrogen storage
journal, April 2014


Complex hydrides for hydrogen storage – new perspectives
journal, April 2014


Novel solvates M(BH 4 ) 3 S(CH 3 ) 2 and properties of halide-free M(BH 4 ) 3 (M = Y or Gd)
journal, January 2014

  • Ley, Morten B.; Paskevicius, Mark; Schouwink, Pascal
  • Dalton Trans., Vol. 43, Issue 35
  • DOI: 10.1039/C4DT01125B

Metal hydride materials for solid hydrogen storage: A review☆
journal, June 2007


FT-IR spectra of inorganic borohydrides
journal, July 2014

  • D’Anna, Vincenza; Spyratou, Alexandra; Sharma, Manish
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 128
  • DOI: 10.1016/j.saa.2014.02.130

Intermediate phases observed during decomposition of LiBH4
journal, October 2007


Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage
journal, January 2007

  • Alapati, Sudhakar V.; Karl Johnson, J.; Sholl, David S.
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 12
  • DOI: 10.1039/b617927d

Crystal structure and in situ decomposition of Eu(BH 4 ) 2 and Sm(BH 4 ) 2
journal, January 2015

  • Humphries, Terry D.; Ley, Morten B.; Frommen, Christoph
  • Journal of Materials Chemistry A, Vol. 3, Issue 2
  • DOI: 10.1039/C4TA04080E

Boron-based hydrides for chemical hydrogen storage: Boron-based hydrolytic and thermolytic hydrides
journal, March 2013

  • Moussa, Georges; Moury, Romain; Demirci, Umit B.
  • International Journal of Energy Research, Vol. 37, Issue 8
  • DOI: 10.1002/er.3027

Eutectic melting in metal borohydrides
journal, January 2013

  • Paskevicius, Mark; Ley, Morten B.; Sheppard, Drew A.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 45
  • DOI: 10.1039/c3cp53920b

Thermal Stability of Li 2 B 12 H 12 and its Role in the Decomposition of LiBH 4
journal, April 2013

  • Pitt, Mark P.; Paskevicius, Mark; Brown, David H.
  • Journal of the American Chemical Society, Vol. 135, Issue 18
  • DOI: 10.1021/ja400131b

Reversible dehydrogenation of magnesium borohydride to magnesium triborane in the solid state under moderate conditions
journal, January 2011

  • Chong, Marina; Karkamkar, Abhi; Autrey, Tom
  • Chem. Commun., Vol. 47, Issue 4
  • DOI: 10.1039/C0CC03461D

The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides
journal, December 2015

  • Černý, Radovan; Schouwink, Pascal
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 71, Issue 6
  • DOI: 10.1107/S2052520615018508

Complex high-temperature phase transitions in Li2B12H12 and Na2B12H12
journal, April 2014


A review of catalyst-enhanced magnesium hydride as a hydrogen storage material
journal, September 2015


In situ solid state 11B MAS-NMR studies of the thermal decomposition of ammonia borane: mechanistic studies of the hydrogen release pathways from a solid state hydrogen storage material
journal, January 2007

  • Stowe, Ashley C.; Shaw, Wendy J.; Linehan, John C.
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 15
  • DOI: 10.1039/b617781f

Large-scale screening of metal hydrides for hydrogen storage from first-principles calculations based on equilibrium reaction thermodynamics
journal, January 2011

  • Kim, Ki Chul; Kulkarni, Anant D.; Johnson, J. Karl
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 15
  • DOI: 10.1039/c0cp02950e

First-Principles Prediction of Thermodynamically Reversible Hydrogen Storage Reactions in the Li-Mg-Ca-B-H System
journal, January 2009

  • Ozolins, V.; Majzoub, E. H.; Wolverton, C.
  • Journal of the American Chemical Society, Vol. 131, Issue 1
  • DOI: 10.1021/ja8066429

Metallo Borohydrides. III. Lithium Borohydride
journal, December 1940

  • Schlesinger, H. I.; Brown, Herbert C.
  • Journal of the American Chemical Society, Vol. 62, Issue 12
  • DOI: 10.1021/ja01869a039

Bimetallic Borohydrides in the System M (BH 4 ) 2 –KBH 4 ( M = Mg, Mn): On the Structural Diversity
journal, May 2012

  • Schouwink, Pascal; D’Anna, Vincenza; Ley, Morten Brix
  • The Journal of Physical Chemistry C, Vol. 116, Issue 20
  • DOI: 10.1021/jp212318s

Phase Diagram for the NaBH 4 –KBH 4 System and the Stability of a Na 1– x K x BH 4 Solid Solution
journal, December 2015

  • Jensen, Steffen R. H.; Jepsen, Lars H.; Skibsted, Jørgen
  • The Journal of Physical Chemistry C, Vol. 119, Issue 50
  • DOI: 10.1021/acs.jpcc.5b09851

Metal borohydrides and derivatives – synthesis, structure and properties
journal, January 2017

  • Paskevicius, Mark; Jepsen, Lars H.; Schouwink, Pascal
  • Chemical Society Reviews, Vol. 46, Issue 5
  • DOI: 10.1039/C6CS00705H

Amides and borohydrides for high-capacity solid-state hydrogen storage—materials design and kinetic improvements
journal, June 2013


Hydrogen - A sustainable energy carrier
journal, February 2017

  • Møller, Kasper T.; Jensen, Torben R.; Akiba, Etsuo
  • Progress in Natural Science: Materials International, Vol. 27, Issue 1
  • DOI: 10.1016/j.pnsc.2016.12.014

Reversible Storage of Hydrogen in Destabilized LiBH 4
journal, March 2005

  • Vajo, John J.; Skeith, Sky L.; Mertens, Florian
  • The Journal of Physical Chemistry B, Vol. 109, Issue 9
  • DOI: 10.1021/jp040769o

Theoretical study of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:msub><mml:mi>B</mml:mi><mml:mrow><mml:mn>12</mml:mn></mml:mrow></mml:msub><mml:msub><mml:mi>H</mml:mi><mml:mi>n</mml:mi></mml:msub><mml:msubsup><mml:mi>F</mml:mi><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:mn>12</mml:mn><mml:mo>−</mml:mo><mml:mi>n</mml:mi></mml:mrow><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:math> species
journal, October 2015


The effect of Al on the hydrogen sorption mechanism of LiBH4
journal, January 2009

  • Friedrichs, O.; Kim, J. W.; Remhof, A.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 10
  • DOI: 10.1039/b814282c

Hydrogen reversibility of LiBH 4 –MgH 2 –Al composites
journal, January 2014

  • Hansen, Bjarne R. S.; Ravnsbæk, Dorthe B.; Skibsted, Jørgen
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 19
  • DOI: 10.1039/C4CP00651H

Chemistry of Boranes. III. 1 The Infrared and Raman Spectra of B 12 H 12 - and Related Anions
journal, July 1962

  • Muetterties, E. L.; Merrifield, R. E.; Miller, H. C.
  • Journal of the American Chemical Society, Vol. 84, Issue 13
  • DOI: 10.1021/ja00872a011

Metal boranes: Progress and applications
journal, September 2016

  • Hansen, Bjarne R. S.; Paskevicius, Mark; Li, Hai-Wen
  • Coordination Chemistry Reviews, Vol. 323
  • DOI: 10.1016/j.ccr.2015.12.003

Direct hydrogenation of magnesium boride to magnesium borohydride: demonstration of >11 weight percent reversible hydrogenstorage
journal, January 2010

  • Severa, Godwin; Rönnebro, Ewa; Jensen, Craig M.
  • Chem. Commun., Vol. 46, Issue 3
  • DOI: 10.1039/B921205A

Ammine-Stabilized Transition-Metal Borohydrides of Iron, Cobalt, and Chromium: Synthesis and Characterization
journal, October 2015


Thermodynamic Changes in Mechanochemically Synthesized Magnesium Hydride Nanoparticles
journal, April 2010

  • Paskevicius, Mark; Sheppard, Drew A.; Buckley, Craig E.
  • Journal of the American Chemical Society, Vol. 132, Issue 14
  • DOI: 10.1021/ja908398u