DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Family of Layered Phosphates Crystallizing in a Rare Geometrical Isomer of the Phosphuranylite Topology: Synthesis, Characterization, and Computational Modeling of A4[(UO2)3O2(PO4)2] (A = Alkali Metal) Exhibiting Intralayer Ion Exchange

Abstract

Single crystals of eight new layered uranyl phosphates were grown from alkali chloride fluxes: Cs1.4K2.6[(UO2)3O2(PO4)2], Cs0.7K3.3[(UO2)3O2(PO4)2], Rb1.4K2.6[(UO2)3O2(PO4)2], K4[(UO2)3O2(PO4)2], K2.9Na0.9Rb0.2[(UO2)3O2(PO4)2], K2.1Na0.7Rb1.2[(UO2)3O2(PO4)2], Cs1.7K4.3[(UO2)5O5(PO4)2], and Rb1.6K4.4[(UO2)5O5(PO4)2]. All structures crystallize in the monoclinic space group, P21/c and contain uranyl phosphate layers with alkali metals located between the layers for charge balance. Ion exchange experiments on Cs0.7K3.3[(UO2)3O2(PO4)2], Rb1.4K2.6[(UO2)3O2(PO4)2], and K4[(UO2)3O2(PO4)2] demonstrated that Cs and Rb cations cannot be exchanged for K cations; however, K cations can be readily exchanged for Na, Rb, and Cs. Enthalpies of formation were calculated from density functional theory (DFT) and volume-based thermodynamics (VBT) for all six structures. A value for the enthalpy of formation of the phosphuranylite sheet, [(UO2)3O2(PO4)2]4–, was derived using single-ion additive methods coupled with VBT. Finally, DFT and VBT calculations were used to justify results of the ion exchange experiments. Cs0.7K3.3[(UO2)3O2(PO4)2], Rb1.4K2.6[(UO2)3O2(PO4)2], and K4[(UO2)3O2(PO4)2] exhibit typical luminescence of the uranyl group.

Authors:
 [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Univ. of South Carolina, Columbia, SC (United States). The Center for Hierarchical Wasteform Materials
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC), Washington D.C. (United States). Center for Hierarchical Waste Form Materials (CHWM)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470523
Grant/Contract Number:  
SC0016574
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 8; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY

Citation Formats

Juillerat, Christian A., Moore, Emily E., Kocevski, Vancho, Besmann, Theodore, and zur Loye, Hans-Conrad. A Family of Layered Phosphates Crystallizing in a Rare Geometrical Isomer of the Phosphuranylite Topology: Synthesis, Characterization, and Computational Modeling of A4[(UO2)3O2(PO4)2] (A = Alkali Metal) Exhibiting Intralayer Ion Exchange. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.8b00434.
Juillerat, Christian A., Moore, Emily E., Kocevski, Vancho, Besmann, Theodore, & zur Loye, Hans-Conrad. A Family of Layered Phosphates Crystallizing in a Rare Geometrical Isomer of the Phosphuranylite Topology: Synthesis, Characterization, and Computational Modeling of A4[(UO2)3O2(PO4)2] (A = Alkali Metal) Exhibiting Intralayer Ion Exchange. United States. https://doi.org/10.1021/acs.inorgchem.8b00434
Juillerat, Christian A., Moore, Emily E., Kocevski, Vancho, Besmann, Theodore, and zur Loye, Hans-Conrad. Mon . "A Family of Layered Phosphates Crystallizing in a Rare Geometrical Isomer of the Phosphuranylite Topology: Synthesis, Characterization, and Computational Modeling of A4[(UO2)3O2(PO4)2] (A = Alkali Metal) Exhibiting Intralayer Ion Exchange". United States. https://doi.org/10.1021/acs.inorgchem.8b00434. https://www.osti.gov/servlets/purl/1470523.
@article{osti_1470523,
title = {A Family of Layered Phosphates Crystallizing in a Rare Geometrical Isomer of the Phosphuranylite Topology: Synthesis, Characterization, and Computational Modeling of A4[(UO2)3O2(PO4)2] (A = Alkali Metal) Exhibiting Intralayer Ion Exchange},
author = {Juillerat, Christian A. and Moore, Emily E. and Kocevski, Vancho and Besmann, Theodore and zur Loye, Hans-Conrad},
abstractNote = {Single crystals of eight new layered uranyl phosphates were grown from alkali chloride fluxes: Cs1.4K2.6[(UO2)3O2(PO4)2], Cs0.7K3.3[(UO2)3O2(PO4)2], Rb1.4K2.6[(UO2)3O2(PO4)2], K4[(UO2)3O2(PO4)2], K2.9Na0.9Rb0.2[(UO2)3O2(PO4)2], K2.1Na0.7Rb1.2[(UO2)3O2(PO4)2], Cs1.7K4.3[(UO2)5O5(PO4)2], and Rb1.6K4.4[(UO2)5O5(PO4)2]. All structures crystallize in the monoclinic space group, P21/c and contain uranyl phosphate layers with alkali metals located between the layers for charge balance. Ion exchange experiments on Cs0.7K3.3[(UO2)3O2(PO4)2], Rb1.4K2.6[(UO2)3O2(PO4)2], and K4[(UO2)3O2(PO4)2] demonstrated that Cs and Rb cations cannot be exchanged for K cations; however, K cations can be readily exchanged for Na, Rb, and Cs. Enthalpies of formation were calculated from density functional theory (DFT) and volume-based thermodynamics (VBT) for all six structures. A value for the enthalpy of formation of the phosphuranylite sheet, [(UO2)3O2(PO4)2]4–, was derived using single-ion additive methods coupled with VBT. Finally, DFT and VBT calculations were used to justify results of the ion exchange experiments. Cs0.7K3.3[(UO2)3O2(PO4)2], Rb1.4K2.6[(UO2)3O2(PO4)2], and K4[(UO2)3O2(PO4)2] exhibit typical luminescence of the uranyl group.},
doi = {10.1021/acs.inorgchem.8b00434},
journal = {Inorganic Chemistry},
number = 8,
volume = 57,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Does Iodate Incorporate into Layered Uranyl Phosphates Under Hydrothermal Conditions?
journal, December 2009

  • Ling, Jie; Wu, Shijun; Chen, Fanrong
  • Inorganic Chemistry, Vol. 48, Issue 23
  • DOI: 10.1021/ic9011247

A new uranyl phosphate chain in the structure of parsonsite
journal, May 2000


Systematic Evolution from Uranyl(VI) Phosphites to Uranium(IV) Phosphates
journal, May 2012

  • Villa, Eric M.; Marr, Connor J.; Jouffret, Laurent J.
  • Inorganic Chemistry, Vol. 51, Issue 12
  • DOI: 10.1021/ic3000735

From Order to Disorder and Back Again: In Situ Hydrothermal Redox Reactions of Uranium Phosphites and Phosphates
journal, January 2013

  • Villa, Eric M.; Marr, Connor J.; Diwu, Juan
  • Inorganic Chemistry, Vol. 52, Issue 2
  • DOI: 10.1021/ic302198w

U6+ Minerals and Inorganic Compounds: Insights into an Expanded Structural Hierarchy of Crystal Structures
journal, December 2005


The Crystal Structure of Bergenite, a new Geometrical Isomer of the Phosphuranylite Group
journal, February 2003


High-Temperature, High-Pressure Hydrothermal Synthesis, Characterization, and Structural Relationships of Layered Uranyl Arsenates
journal, August 2014

  • Liu, Hsin-Kuan; Ramachandran, Eswaran; Chen, Yi-Hsin
  • Inorganic Chemistry, Vol. 53, Issue 17
  • DOI: 10.1021/ic501091g

The importance of accurate crystal structure determination of uranium minerals. I. Phosphuranylite KCa(H3O)3(UO2)7(PO4)4O4.8H2O
journal, August 1991

  • Demartin, F.; Diella, V.; Donzelli, S.
  • Acta Crystallographica Section B Structural Science, Vol. 47, Issue 4
  • DOI: 10.1107/S010876819100099X

Materials Discovery by Flux Crystal Growth: Quaternary and Higher Order Oxides
journal, January 2012

  • Bugaris, Daniel E.; zur Loye, Hans-Conrad
  • Angewandte Chemie International Edition, Vol. 51, Issue 16
  • DOI: 10.1002/anie.201102676

Understanding the Formation of Salt-Inclusion Phases: An Enhanced Flux Growth Method for the Targeted Synthesis of Salt-Inclusion Cesium Halide Uranyl Silicates
journal, May 2016

  • Morrison, Gregory; Smith, Mark D.; zur Loye, Hans-Conrad
  • Journal of the American Chemical Society, Vol. 138, Issue 22
  • DOI: 10.1021/jacs.6b03205

SHELXT – Integrated space-group and crystal-structure determination
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section A Foundations and Advances, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053273314026370

Crystal structure refinement with SHELXL
journal, January 2015

  • Sheldrick, George M.
  • Acta Crystallographica Section C Structural Chemistry, Vol. 71, Issue 1, p. 3-8
  • DOI: 10.1107/S2053229614024218

OLEX2 : a complete structure solution, refinement and analysis program
journal, January 2009

  • Dolomanov, Oleg V.; Bourhis, Luc J.; Gildea, Richard J.
  • Journal of Applied Crystallography, Vol. 42, Issue 2
  • DOI: 10.1107/S0021889808042726

Structure validation in chemical crystallography
journal, January 2009

  • Spek, Anthony L.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 65, Issue 2, p. 148-155
  • DOI: 10.1107/S090744490804362X

Volume-Based Thermodynamics: A Prescription for Its Application and Usage in Approximation and Prediction of Thermodynamic Data
journal, April 2011

  • Glasser, Leslie; Jenkins, H. Donald Brooke
  • Journal of Chemical & Engineering Data, Vol. 56, Issue 4
  • DOI: 10.1021/je100683u

Predictive thermodynamics for ionic solids and liquids
journal, January 2016

  • Glasser, Leslie; Jenkins, H. Donald Brooke
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 31
  • DOI: 10.1039/C6CP00235H

Relationships among Ionic Lattice Energies, Molecular (Formula Unit) Volumes, and Thermochemical Radii
journal, August 1999

  • Jenkins, H. Donald B.; Roobottom, Helen K.; Passmore, Jack
  • Inorganic Chemistry, Vol. 38, Issue 16
  • DOI: 10.1021/ic9812961

Geochemical applications of the simple salt approximation to the lattice energies of complex materials
journal, February 2005


Standard Absolute Entropy, , Values from Volume or Density. 1. Inorganic Materials
journal, December 2003

  • Jenkins, H. Donald Brooke; Glasser, Leslie
  • Inorganic Chemistry, Vol. 42, Issue 26
  • DOI: 10.1021/ic030219p

The Thermodynamic Properties of the f -Elements and their Compounds. Part 2. The Lanthanide and Actinide Oxides
journal, March 2014

  • Konings, Rudy J. M.; Beneš, Ondrej; Kovács, Attila
  • Journal of Physical and Chemical Reference Data, Vol. 43, Issue 1
  • DOI: 10.1063/1.4825256

Electronic spectroscopy and ionization potential of UO2 in the gas phase
journal, March 2004

  • Han, Jiande; Goncharov, Vasiliy; Kaledin, Leonid A.
  • The Journal of Chemical Physics, Vol. 120, Issue 11
  • DOI: 10.1063/1.1647531

Photoelectron spectroscopy of PO 2
journal, February 1996

  • Xu, Cangshan; de Beer, Esther; Neumark, Daniel M.
  • The Journal of Chemical Physics, Vol. 104, Issue 7
  • DOI: 10.1063/1.470983

Thermodynamic Clarification of the Curious Ferric/Potassium Ion Exchange Accompanying the Electrochromic Redox Reactions of Prussian Blue, Iron(III) Hexacyanoferrate(II)
journal, August 2004

  • Rosseinsky, David R.; Glasser, Leslie; Jenkins, H. Donald Brooke
  • Journal of the American Chemical Society, Vol. 126, Issue 33
  • DOI: 10.1021/ja040055r

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Density-functional theory and NiO photoemission spectra
journal, December 1993


Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators
journal, August 1995


Recent spectroscopic studies of UO2
journal, January 1987

  • Schoenes, Joachim
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 83, Issue 7
  • DOI: 10.1039/f29878301205

Systematic Analysis of Core Photoemission Spectra for Actinide Di-Oxides and Rare-Earth Sesqui-Oxides
journal, January 1992

  • Kotani, Akio; Yamazaki, Takao
  • Progress of Theoretical Physics Supplement, Vol. 108
  • DOI: 10.1143/PTPS.108.117

Ab Initio Investigation of the UO 3 Polymorphs: Structural Properties and Thermodynamic Stability
journal, November 2014

  • Brincat, Nicholas A.; Parker, Stephen C.; Molinari, Marco
  • Inorganic Chemistry, Vol. 53, Issue 23
  • DOI: 10.1021/ic500791m

Density Functional Theory Study of the Thermodynamic and Raman Vibrational Properties of γ-UO 3 Polymorph
journal, June 2017

  • Colmenero, Francisco; Bonales, Laura. J.; Cobos, Joaquín
  • The Journal of Physical Chemistry C, Vol. 121, Issue 27
  • DOI: 10.1021/acs.jpcc.7b04389

Comparison of bonding and charge density in δ U O 3 , γ U O 3 , and L a 6 U O 12
journal, November 2017


Fluorescence spectroscopy of U(VI)-silicates and U(VI)-contaminated Hanford sediment
journal, March 2005

  • Wang, Zheming; Zachara, John M.; Gassman, Paul L.
  • Geochimica et Cosmochimica Acta, Vol. 69, Issue 6
  • DOI: 10.1016/j.gca.2004.08.028

Standard enthalpies of formation of uranium compounds XII. Anhydrous phosphates
journal, May 1985


Crystal structure and chemical constitution
journal, January 1929


Works referencing / citing this record:

Flux crystal growth: a versatile technique to reveal the crystal chemistry of complex uranium oxides
journal, January 2019

  • Juillerat, Christian A.; Klepov, Vladislav V.; Morrison, Gregory
  • Dalton Transactions, Vol. 48, Issue 10
  • DOI: 10.1039/c8dt04675a

Understanding the Stability of Salt-Inclusion Phases for Nuclear Waste-forms through Volume-based Thermodynamics
journal, October 2018


Targeted crystal growth of uranium gallophosphates via the systematic exploration of the UF 4 –GaPO 4 –ACl (A = Cs, Rb) phase space
journal, January 2020

  • Juillerat, Christian A.; Klepov, Vladislav V.; Smith, Mark D.
  • CrystEngComm, Vol. 22, Issue 17
  • DOI: 10.1039/d0ce00343c