DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control

Abstract

Bi2Te3 has been recognized as an important cooling material for thermoelectric applications. Yet its thermoelectric performance could still be improved. Here we propose a band engineering strategy by optimizing the converging valence bands of Bi2Te3 and Sb2Te3 in the (Bi1-xSbx)2Te3 system when x = 0.75. Band convergence successfully explains the sharp increase in density-of-states effective mass yet relatively constant mobility and optical band gap measurement. This band convergence picture guides the carrier concentration tuning for optimum thermoelectric performance. To synthesize homogeneous textured and optimally doped (Bi0.25Sb0.75)2Te3, excess Te was chosen as the dopant. Uniform control of the optimized thermoelectric composition was achieved by zone-melting which utilizes separate solidus and liquidus compositions to obtain zT = 1.05 (at 300 K) without nanostructuring.

Authors:
ORCiD logo [1];  [2];  [2];  [3]; ORCiD logo [3];  [3]
  1. Northwestern Univ., Evanston, IL (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States); Samsung Advanced Institute of Technology, Samsung Electronics (South Korea)
  2. California Inst. of Technology (CalTech), Pasadena, CA (United States)
  3. Northwestern Univ., Evanston, IL (United States); California Inst. of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Solid-State Solar-Thermal Energy Conversion Center (S3TEC); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470452
Grant/Contract Number:  
SC0001299; FG02-09ER46577
Resource Type:
Accepted Manuscript
Journal Name:
Materials Today
Additional Journal Information:
Journal Volume: 20; Journal Issue: 8; Related Information: S3TEC partners with Massachusetts Institute of Technology (lead); Boston College; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; Journal ID: ISSN 1369-7021
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING; solar (photovoltaic); solar (thermal); solid state lighting; phonons; thermal conductivity; thermoelectric; defects; mechanical behavior; charge transport; spin dynamics; materials and chemistry by design; optics; synthesis (novel materials); synthesis (self-assembly); synthesis (scalable processing)

Citation Formats

Kim, Hyun-Sik, Heinz, Nicholas A., Gibbs, Zachary M., Tang, Yinglu, Kang, Stephen D., and Snyder, G. Jeffrey. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. United States: N. p., 2017. Web. doi:10.1016/j.mattod.2017.02.007.
Kim, Hyun-Sik, Heinz, Nicholas A., Gibbs, Zachary M., Tang, Yinglu, Kang, Stephen D., & Snyder, G. Jeffrey. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. United States. https://doi.org/10.1016/j.mattod.2017.02.007
Kim, Hyun-Sik, Heinz, Nicholas A., Gibbs, Zachary M., Tang, Yinglu, Kang, Stephen D., and Snyder, G. Jeffrey. Wed . "High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control". United States. https://doi.org/10.1016/j.mattod.2017.02.007. https://www.osti.gov/servlets/purl/1470452.
@article{osti_1470452,
title = {High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control},
author = {Kim, Hyun-Sik and Heinz, Nicholas A. and Gibbs, Zachary M. and Tang, Yinglu and Kang, Stephen D. and Snyder, G. Jeffrey},
abstractNote = {Bi2Te3 has been recognized as an important cooling material for thermoelectric applications. Yet its thermoelectric performance could still be improved. Here we propose a band engineering strategy by optimizing the converging valence bands of Bi2Te3 and Sb2Te3 in the (Bi1-xSbx)2Te3 system when x = 0.75. Band convergence successfully explains the sharp increase in density-of-states effective mass yet relatively constant mobility and optical band gap measurement. This band convergence picture guides the carrier concentration tuning for optimum thermoelectric performance. To synthesize homogeneous textured and optimally doped (Bi0.25Sb0.75)2Te3, excess Te was chosen as the dopant. Uniform control of the optimized thermoelectric composition was achieved by zone-melting which utilizes separate solidus and liquidus compositions to obtain zT = 1.05 (at 300 K) without nanostructuring.},
doi = {10.1016/j.mattod.2017.02.007},
journal = {Materials Today},
number = 8,
volume = 20,
place = {United States},
year = {2017},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 60 works
Citation information provided by
Web of Science

Figures / Tables:

FIGURE 1 FIGURE 1: Band related properties as a function of composition (x) for (Bi1–xSbx)2Te3 at 300 K. (a) Density-of-states effective mass (red circle with error bars in dotted lines) showing an abrupt peak (grey line as guide to the eye) while the mobility prefactor (b) shows no such change at xmore » = 0.75. (c) Brillouin zone of Bi2Te3 (x = 0) showing hole pockets for the first valence band (in purple) and for the second valence band (in green). (d) Semi-empirical band structure (300 K) with the first valence band (purple line), second valence band (green line), and the lowest conduction band (dark grey line). For simplicity, the energy of the first valence band (purple) of Bi2Te3 (x = 0) is set to 0.0 eV. ΔEVB1– VB2 denotes energy difference between the first and second valence bands. The energy gap between the lowest conduction band (dark grey) and the highest valence band (purple for 0 ≤ x ≤ 0.75 and green for 0.75 ≤ x ≤ 1) is the band gap Eg(x).« less

Save / Share:

Works referenced in this record:

Preserving Montreal Protocol Climate Benefits by Limiting HFCs
journal, February 2012


Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Compound tellurides and their alloys for peltier cooling—A review
journal, October 1972


Identifying the Specific Nanostructures Responsible for the High Thermoelectric Performance of (Bi,Sb) 2 Te 3 Nanocomposites
journal, September 2010

  • Xie, Wenjie; He, Jian; Kang, Hye Jung
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl100804a

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
journal, April 2015


High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly
journal, January 2012

  • Mehta, Rutvik J.; Zhang, Yanliang; Karthik, Chinnathambi
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3213

Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Galvanomagnetic Effects in p-Type Bismuth Telluride
journal, September 1958


Transport properties analysis of single crystals (BixSb1 − x)2Te3 grown by the traveling heater method
journal, May 1993


Seebeck coefficient and electrical conductivity in p-(Bi1−xSbx)2 Te3 at room temperature
journal, December 1983


Investigation of the Valence Band Structure of Thermoelectric (Bi1−xSbx)2Te3 Single Crystals
journal, November 1988

  • Stordeur, M.; Stölzer, M.; Sobotta, H.
  • physica status solidi (b), Vol. 150, Issue 1
  • DOI: 10.1002/pssb.2221500120

Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1−x crystals prepared via zone melting
journal, April 2005


Bismuth telluride compounds with high thermoelectric figures of merit
journal, January 2003

  • Yamashita, Osamu; Tomiyoshi, Shoichi; Makita, Ken
  • Journal of Applied Physics, Vol. 93, Issue 1
  • DOI: 10.1063/1.1525400

Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO
journal, January 2011

  • Zhang, Ting; Zhang, Qiushi; Jiang, Jun
  • Applied Physics Letters, Vol. 98, Issue 2
  • DOI: 10.1063/1.3541654

Thermoelectric properties of (BixSb1−x)2Te3 single crystal solid solutions grown by the T.H.M. method
journal, August 1992


Study of the Bi-Sb-Te ternary phase diagram
journal, February 1992

  • Caillat, T.; Carle, M.; Perrin, D.
  • Journal of Physics and Chemistry of Solids, Vol. 53, Issue 2, p. 227-232
  • DOI: 10.1016/0022-3697(92)90049-J

Applying Quantitative Microstructure Control in Advanced Functional Composites
journal, December 2013

  • Heinz, Nicholas A.; Ikeda, Teruyuki; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 24, Issue 15
  • DOI: 10.1002/adfm.201302899

Zone Leveling Crystal Growth of Thermoelectric PbTe Alloys with Sb 2 Te 3 Widmanstätten Precipitates
journal, September 2011

  • Ikeda, Teruyuki; Marolf, Nathan J.; Snyder, G. Jeffrey
  • Crystal Growth & Design, Vol. 11, Issue 9
  • DOI: 10.1021/cg2007588

A high temperature apparatus for measurement of the Seebeck coefficient
journal, June 2011

  • Iwanaga, Shiho; Toberer, Eric S.; LaLonde, Aaron
  • Review of Scientific Instruments, Vol. 82, Issue 6
  • DOI: 10.1063/1.3601358

Connecting Thermoelectric Performance and Topological-Insulator Behavior: Bi 2 Te 3 and Bi 2 Te 2 Se from First Principles
journal, January 2015


First-principles electronic structure and its relation to thermoelectric properties of Bi 2 Te 3
journal, February 2001


Effect of p 1 / 2 corrections in the electronic structure of Bi 2 Te 3 compounds
journal, October 2003


Electronic structure of the thermoelectric materials Bi 2 Te 3 and Sb 2 Te 3 from first-principles calculations
journal, August 2007


Importance of non-parabolic band effects in the thermoelectric properties of semiconductors
journal, November 2013

  • Chen, Xin; Parker, David; Singh, David J.
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03168

Ambipolar field effect in the ternary topological insulator (BixSb1–x)2Te3 by composition tuning
journal, October 2011

  • Kong, Desheng; Chen, Yulin; Cha, Judy J.
  • Nature Nanotechnology, Vol. 6, Issue 11
  • DOI: 10.1038/nnano.2011.172

Two Valence Subbands in Single Crystals of Bismuth Telluride Doped with Lead and Its Electrical Properties
journal, January 1989


Evidence for a second valence band in p-type Bi2Te3 from Magneto-Seebeck and Shubnikov-De Haas-data
journal, July 1972


Non-Parabolicity of the Highest Valence Band of Bi2Te3 from Shubnikov-de Haas Effect
journal, April 1976


Doping properties of Sb2Te3 indicating a two valence band model
journal, August 1965


Shubnikov-de Haas effect in p-type Sb2 Te3
journal, August 1973


Investigation of the highest valence band in (Bi1-xSbx)2Te3 crystals
journal, November 1977


Galvanomagnetic transport properties of Sb2Te3
journal, March 1978


Investigations on a two-valence band model for Sb2Te3
journal, September 1981


Temperature dependent band gap in PbX (X = S, Se, Te)
journal, December 2013

  • Gibbs, Zachary M.; Kim, Hyoungchul; Wang, Heng
  • Applied Physics Letters, Vol. 103, Issue 26
  • DOI: 10.1063/1.4858195

Transport properties of p-type Bi2Te3Sb2Te3 alloys in the temperature range 80–370°K
journal, September 1962

  • Testardi, L. R.; Bierly, J. N.; Donahoe, F. J.
  • Journal of Physics and Chemistry of Solids, Vol. 23, Issue 9
  • DOI: 10.1016/0022-3697(62)90168-3

Anisotropy of plasma reflection of solid solutions (Bi2 − x Sb x )Te3 (0 < x < 1) in the Temperature Range 78–293 K
journal, December 2011

  • Stepanov, N. P.; Kalashnikov, A. A.; Gil’fanov, A. K.
  • Optics and Spectroscopy, Vol. 111, Issue 6
  • DOI: 10.1134/S0030400X11130236

The optical properties of p-type Bi2Te3Sb2Te3 alloys between 2–15 microns
journal, September 1962


Optical band gap and the Burstein–Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy
journal, July 2013


Band structure of indium antimonide
journal, January 1957


Valence-Band Properties of Bi2Te3 from Galvanomagnetic Measurements
journal, August 1973

  • Sologub, V. V.; Goletskaya, A. D.; Lang, I. G.
  • Physica Status Solidi (b), Vol. 58, Issue 2
  • DOI: 10.1002/pssb.2220580205

Thermoelectric Power and Scattering of Carriers in Bi2?xSnxTe3 with Layered Structure
journal, February 1997


The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions
journal, October 2012

  • Wang, Heng; LaLonde, Aaron D.; Pei, Yanzhong
  • Advanced Functional Materials, Vol. 23, Issue 12
  • DOI: 10.1002/adfm.201201576

Figure of merit of quaternary (Sb0.75Bi0.25)2−xInxTe3 single crystals
journal, July 2008

  • Drašar, Č.; Hovorková, A.; Lošťák, P.
  • Journal of Applied Physics, Vol. 104, Issue 2
  • DOI: 10.1063/1.2956608

Valence-band energy spectrum of solid solutions of narrow-gap-semiconductor Bi 2 x Sn x Te 3 single crystals
journal, December 1994


Influence of Sn on Galvanomagnetic Properties of Layered p-(Bi1?xSbx)2Te3 Semiconductors
journal, February 2002


Recent Studies of Bismuth Telluride and Its Alloys
journal, October 1961

  • Goldsmid, H. J.
  • Journal of Applied Physics, Vol. 32, Issue 10
  • DOI: 10.1063/1.1777042

Works referencing / citing this record:

Band engineering in Mg 3 Sb 2 by alloying with Mg 3 Bi 2 for enhanced thermoelectric performance
journal, January 2018

  • Imasato, Kazuki; Kang, Stephen Dongmin; Ohno, Saneyuki
  • Materials Horizons, Vol. 5, Issue 1
  • DOI: 10.1039/c7mh00865a

Exceptional thermoelectric performance in Mg 3 Sb 0.6 Bi 1.4 for low-grade waste heat recovery
journal, January 2019

  • Imasato, Kazuki; Kang, Stephen Dongmin; Snyder, G. Jeffrey
  • Energy & Environmental Science, Vol. 12, Issue 3
  • DOI: 10.1039/c8ee03374a

Advances in Thermoelectric Mg 3 Sb 2 and Its Derivatives
journal, July 2018


Valleytronics in thermoelectric materials
journal, February 2018


Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics
journal, January 2020


Melt-Centrifuged (Bi,Sb) 2 Te 3 : Engineering Microstructure toward High Thermoelectric Efficiency
journal, July 2018


Enhanced Thermoelectric Performance of Cu-incorporated Bi0.5Sb1.5Te3 by Melt Spinning and Spark Plasma Sintering
journal, November 2019


Beneficial Influence of Co‐Doping on Thermoelectric Efficiency with Respect to Electronic and Thermal Transport Properties
journal, March 2019

  • Kim, Hyun‐Sik; Choo, Sung‐sil; Cho, Hyun‐jun
  • physica status solidi (a), Vol. 216, Issue 9
  • DOI: 10.1002/pssa.201900039

High thermoelectric performance in Bi 0.46 Sb 1.54 Te 3 nanostructured with ZnTe
journal, January 2018

  • Deng, Rigui; Su, Xianli; Hao, Shiqiang
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/c8ee00290h

Grain Boundary Engineering Nanostructured SrTiO 3 for Thermoelectric Applications
journal, May 2019

  • Dylla, Maxwell T.; Kuo, Jimmy Jiahong; Witting, Ian
  • Advanced Materials Interfaces, Vol. 6, Issue 15
  • DOI: 10.1002/admi.201900222

Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices
journal, November 2018


Synergistic modulation of mobility and thermal conductivity in (Bi,Sb) 2 Te 3 towards high thermoelectric performance
journal, January 2019

  • Pan, Yu; Qiu, Yang; Witting, Ian
  • Energy & Environmental Science, Vol. 12, Issue 2
  • DOI: 10.1039/c8ee03225d

The Thermoelectric Properties of Bismuth Telluride
journal, April 2019

  • Witting, Ian T.; Chasapis, Thomas C.; Ricci, Francesco
  • Advanced Electronic Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aelm.201800904

Observation of valence band crossing: the thermoelectric properties of CaZn 2 Sb 2 –CaMg 2 Sb 2 solid solution
journal, January 2018

  • Wood, Max; Aydemir, Umut; Ohno, Saneyuki
  • Journal of Materials Chemistry A, Vol. 6, Issue 20
  • DOI: 10.1039/c8ta02250j

A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization
journal, June 2018

  • Zevalkink, Alex; Smiadak, David M.; Blackburn, Jeff L.
  • Applied Physics Reviews, Vol. 5, Issue 2
  • DOI: 10.1063/1.5021094

Complex Band Structures and Lattice Dynamics of Bi 2 Te 3 ‐Based Compounds and Solid Solutions
journal, April 2019

  • Fang, Teng; Li, Xin; Hu, Chaoliang
  • Advanced Functional Materials, Vol. 29, Issue 28
  • DOI: 10.1002/adfm.201900677

3D extruded composite thermoelectric threads for flexible energy harvesting
journal, December 2019


Compliant and stretchable thermoelectric coils for energy harvesting in miniature flexible devices.
text, January 2018

  • Nan, Kewang; Kang, Stephen Dongmin; Li, Kan
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.40073

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.