skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Long-distance propagation of short-wavelength spin waves

Abstract

Recent years have witnessed a rapidly growing interest in exploring the use of spin waves for information transmission and computation toward establishing a spin-wave-based technology that is not only significantly more energy efficient than the CMOS technology, but may also cause a major departure from the von-Neumann architecture by enabling memory-in-logic and logic-in-memory architectures. A major bottleneck of advancing this technology is the excitation of spin waves with short wavelengths, which is a must because the wavelength dictates device scalability. Here, we report the discovery of an approach for the excitation of nm-wavelength spin waves. The demonstration uses ferromagnetic nanowires grown on a 20-nm-thick Y 3Fe 5O 12 film strip. The propagation of spin waves with a wavelength down to 50 nm over a distance of 60,000 nm is measured. The measurements yield a spin-wave group velocity as high as 2600 m s –1, which is faster than both domain wall and skyrmion motions.

Authors:
 [1];  [2];  [3];  [2]; ORCiD logo [2];  [4];  [2];  [5];  [3];  [2];  [2];  [2];  [2]; ORCiD logo [5]; ORCiD logo [5];  [6];  [7];  [2];  [2];  [3]
  1. Beihang Univ., Beijing (China); Peking Univ., Beijing (China)
  2. Beihang Univ., Beijing (China)
  3. Colorado State Univ., Fort Collins, CO (United States)
  4. Nanjing Univ. of Aeronautics and Astronautics, Nanjing (China)
  5. Peking Univ., Beijing (China)
  6. Peking Univ., Beijing (China); Southern Univ. of Science and Technology, Shenzhen (China)
  7. Beijing Normal Univ., Beijing (China)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC), Washington, D.C. (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1470168
Grant/Contract Number:  
SC0012670
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Related Information: SHINES partners with University of California, Riverside (lead); Arizona State University; Colorado State University; Johns Hopkins University; University of California Irvine; University of California Los Angeles; University of Texas at Austin; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; phonons; thermal conductivity; thermoelectric; spin dynamics; spintronics

Citation Formats

Liu, Chuanpu, Chen, Jilei, Liu, Tao, Heimbach, Florian, Yu, Haiming, Xiao, Yang, Hu, Junfeng, Liu, Mengchao, Chang, Houchen, Stueckler, Tobias, Tu, Sa, Zhang, Youguang, Zhang, Yan, Gao, Peng, Liao, Zhimin, Yu, Dapeng, Xia, Ke, Lei, Na, Zhao, Weisheng, and Wu, Mingzhong. Long-distance propagation of short-wavelength spin waves. United States: N. p., 2018. Web. doi:10.1038/s41467-018-03199-8.
Liu, Chuanpu, Chen, Jilei, Liu, Tao, Heimbach, Florian, Yu, Haiming, Xiao, Yang, Hu, Junfeng, Liu, Mengchao, Chang, Houchen, Stueckler, Tobias, Tu, Sa, Zhang, Youguang, Zhang, Yan, Gao, Peng, Liao, Zhimin, Yu, Dapeng, Xia, Ke, Lei, Na, Zhao, Weisheng, & Wu, Mingzhong. Long-distance propagation of short-wavelength spin waves. United States. doi:10.1038/s41467-018-03199-8.
Liu, Chuanpu, Chen, Jilei, Liu, Tao, Heimbach, Florian, Yu, Haiming, Xiao, Yang, Hu, Junfeng, Liu, Mengchao, Chang, Houchen, Stueckler, Tobias, Tu, Sa, Zhang, Youguang, Zhang, Yan, Gao, Peng, Liao, Zhimin, Yu, Dapeng, Xia, Ke, Lei, Na, Zhao, Weisheng, and Wu, Mingzhong. Wed . "Long-distance propagation of short-wavelength spin waves". United States. doi:10.1038/s41467-018-03199-8. https://www.osti.gov/servlets/purl/1470168.
@article{osti_1470168,
title = {Long-distance propagation of short-wavelength spin waves},
author = {Liu, Chuanpu and Chen, Jilei and Liu, Tao and Heimbach, Florian and Yu, Haiming and Xiao, Yang and Hu, Junfeng and Liu, Mengchao and Chang, Houchen and Stueckler, Tobias and Tu, Sa and Zhang, Youguang and Zhang, Yan and Gao, Peng and Liao, Zhimin and Yu, Dapeng and Xia, Ke and Lei, Na and Zhao, Weisheng and Wu, Mingzhong},
abstractNote = {Recent years have witnessed a rapidly growing interest in exploring the use of spin waves for information transmission and computation toward establishing a spin-wave-based technology that is not only significantly more energy efficient than the CMOS technology, but may also cause a major departure from the von-Neumann architecture by enabling memory-in-logic and logic-in-memory architectures. A major bottleneck of advancing this technology is the excitation of spin waves with short wavelengths, which is a must because the wavelength dictates device scalability. Here, we report the discovery of an approach for the excitation of nm-wavelength spin waves. The demonstration uses ferromagnetic nanowires grown on a 20-nm-thick Y3Fe5O12 film strip. The propagation of spin waves with a wavelength down to 50 nm over a distance of 60,000 nm is measured. The measurements yield a spin-wave group velocity as high as 2600 m s–1, which is faster than both domain wall and skyrmion motions.},
doi = {10.1038/s41467-018-03199-8},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1 : Different magnetic states in a nanopatterned magnetic heterostructure. a Sketch of an YIG (20 nm)/Ti (1 nm)/Co (25 nm) heterostructure with a coplanar waveguide (CPW) prepared on the top. The applied field H is parallel to the Co nanowires (along the y axis). b Color-coded reflection spectramore » S11 measured on the device structure shown in a. The field is set to −3000 Oe to magnetize the Co nanowires and the YIG film to saturation first and then swept from −400 Oe to 400 Oe with a field step of 2.5 Oe. The spectra have several different regions corresponding to three different magnetic states: parallel state (P), antiparallel state (AP), and random state (R). c A line plot extracted from b at a field of 400Oe. d Color-coded reflection spectra S11 with a reversed field sweeping direction, as indicated. The field is set to 3000 Oe first and then swept from 400 Oe to −400 Oe with a field step of −2.5 Oe. e TEM image of the YIG/Ti/Co heterostructure. The horizontal scale bar is 2 nm long. f SEM surface image of the heterostructure. The Co nanowires are color-coded in red and the YIG film beneath the wires are in blue. The scale bar is 500 nm long« less

Save / Share:

Works referenced in this record:

Magnonic logic circuits
journal, June 2010


Direct observation and mapping of spin waves emitted by spin-torque nano-oscillators
journal, October 2010

  • Demidov, Vladislav E.; Urazhdin, Sergei; Demokritov, Sergej O.
  • Nature Materials, Vol. 9, Issue 12
  • DOI: 10.1038/nmat2882

Magnetic domain walls as reconfigurable spin-wave nanochannels
journal, February 2016


Coherent terahertz control of antiferromagnetic spin waves
journal, November 2010


Magnetization oscillations and waves driven by pure spin currents
journal, February 2017


Sub-terahertz spectroscopy of magnetic resonance in BiFeO 3 using a vector network analyzer
journal, June 2016

  • Caspers, Christian; Gandhi, Varun P.; Magrez, Arnaud
  • Applied Physics Letters, Vol. 108, Issue 24
  • DOI: 10.1063/1.4954277

Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions
journal, December 1986


Ferromagnetic resonance study of interface coupling for spin waves in narrow NiFe/Ru/NiFe multilayer nanowires
journal, December 2016


Direct observation of a propagating spin wave induced by spin-transfer torque
journal, August 2011


Making a Reconfigurable Artificial Crystal by Ordering Bistable Magnetic Nanowires
journal, May 2010


Resonant microwave-to-spin-wave transducer
journal, April 2012

  • Au, Y.; Ahmad, E.; Dmytriiev, O.
  • Applied Physics Letters, Vol. 100, Issue 18
  • DOI: 10.1063/1.4711039

Current-Induced Spin-Wave Doppler Shift
journal, October 2008


A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device
journal, February 2016

  • Haldar, Arabinda; Kumar, Dheeraj; Adeyeye, Adekunle Olusola
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.332

Interlayer coupling in Ni 80 Fe 20 /Ru/ Ni 80 Fe 20 multilayer films: Ferromagnetic resonance experiments and theory
journal, August 2014


Nanomagnonic devices based on the spin-transfer torque
journal, May 2014

  • Urazhdin, S.; Demidov, V. E.; Ulrichs, H.
  • Nature Nanotechnology, Vol. 9, Issue 7
  • DOI: 10.1038/nnano.2014.88

All electrical propagating spin wave spectroscopy with broadband wavevector capability
journal, July 2016

  • Ciubotaru, F.; Devolder, T.; Manfrini, M.
  • Applied Physics Letters, Vol. 109, Issue 1
  • DOI: 10.1063/1.4955030

Magnonic Crystal as a Medium with Tunable Disorder on a Periodical Lattice
journal, July 2011


Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
journal, March 1989


Ultra-low magnetic damping of a metallic ferromagnet
journal, May 2016

  • Schoen, Martin A. W.; Thonig, Danny; Schneider, Michael L.
  • Nature Physics, Vol. 12, Issue 9
  • DOI: 10.1038/nphys3770

Magnetic vortex cores as tunable spin-wave emitters
journal, July 2016

  • Wintz, Sebastian; Tiberkevich, Vasil; Weigand, Markus
  • Nature Nanotechnology, Vol. 11, Issue 11
  • DOI: 10.1038/nnano.2016.117

Tunable Short-Wavelength Spin-Wave Emission and Confinement in Anisotropy-Modulated Multiferroic Heterostructures
journal, July 2017


Efficiency of Spin-Wave Bus for Information Transmission
journal, January 2007

  • Khitun, Alexander; Nikonov, Dmitri E.; Bao, Mingqiang
  • IEEE Transactions on Electron Devices, Vol. 54, Issue 12
  • DOI: 10.1109/TED.2007.908898

Domain-wall velocities of up to 750 m s−1 driven by exchange-coupling torque in synthetic antiferromagnets
journal, February 2015

  • Yang, See-Hun; Ryu, Kwang-Su; Parkin, Stuart
  • Nature Nanotechnology, Vol. 10, Issue 3
  • DOI: 10.1038/nnano.2014.324

Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices
journal, November 1988


Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices
journal, May 2015

  • Papp, A.; Porod, W.; Csaba, G.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4906209

Voltage induced mechanical/spin wave propagation over long distances
journal, February 2017

  • Barra, A.; Mal, A.; Carman, G.
  • Applied Physics Letters, Vol. 110, Issue 7
  • DOI: 10.1063/1.4975828

Anisotropic Propagation and Damping of Spin Waves in a Nanopatterned Antidot Lattice
journal, August 2010


Review and prospects of magnonic crystals and devices with reprogrammable band structure
journal, March 2014


Electric-field-induced spin wave generation using multiferroic magnetoelectric cells
journal, February 2014

  • Cherepov, Sergiy; Khalili Amiri, Pedram; Alzate, Juan G.
  • Applied Physics Letters, Vol. 104, Issue 8
  • DOI: 10.1063/1.4865916

Magnetic thin-film insulator with ultra-low spin wave damping for coherent nanomagnonics
journal, October 2014

  • Yu, Haiming; d'Allivy Kelly, O.; Cros, V.
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06848

Spectrum Gaps of Spin Waves Generated by Interference in a Uniform Nanostripe Waveguide
journal, August 2014

  • Wang, Qi; Zhang, Huaiwu; Ma, Guokun
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05917

Nano scale computational architectures with Spin Wave Bus
journal, September 2005

  • Khitun, Alexander; Wang, Kang L.
  • Superlattices and Microstructures, Vol. 38, Issue 3, p. 184-200
  • DOI: 10.1016/j.spmi.2005.07.001

Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements
journal, August 2016


The building blocks of magnonics
journal, October 2011


Omnidirectional spin-wave nanograting coupler
journal, November 2013

  • Yu, Haiming; Duerr, G.; Huber, R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3702

Magnon transistor for all-magnon data processing
journal, August 2014

  • Chumak, Andrii V.; Serga, Alexander A.; Hillebrands, Burkard
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5700

Approaching soft X-ray wavelengths in nanomagnet-based microwave technology
journal, April 2016

  • Yu, Haiming; d’ Allivy Kelly, O.; Cros, V.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11255

Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy
journal, September 2016

  • Li, Peng; Liu, Tao; Chang, Houchen
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12688

Nanomagnonics around the corner
journal, February 2016


Magnon spintronics
journal, June 2015

  • Chumak, A. V.; Vasyuchka, V. I.; Serga, A. A.
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3347

Non-volatile spin wave majority gate at the nanoscale
journal, February 2017

  • Zografos, O.; Dutta, S.; Manfrini, M.
  • AIP Advances, Vol. 7, Issue 5
  • DOI: 10.1063/1.4975693

Long-distance transport of magnon spin information in a magnetic insulator at room temperature
journal, September 2015

  • Cornelissen, L. J.; Liu, J.; Duine, R. A.
  • Nature Physics, Vol. 11, Issue 12
  • DOI: 10.1038/nphys3465

Transmission of electrical signals by spin-wave interconversion in a magnetic insulator
journal, March 2010


Physical Theory of Ferromagnetic Domains
journal, October 1949


Dynamic Exchange Coupling in Magnetic Bilayers
journal, May 2003


Non-volatile Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines
journal, May 2015

  • Dutta, Sourav; Chang, Sou-Chi; Kani, Nickvash
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09861

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.