DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces

Abstract

For the majority of previous work on Y3Fe5O12 (YIG)/normal metal (NM) bi-layered structures, the YIG layers were grown on Gd3Ga5O12 first and were then capped by an NM layer. This work demonstrates the sputtering growth of a Pt/YIG structure where the Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows well-oriented (111) texture, a surface roughness of 0.15 nm, and an effective Gilbert damping constant less than 4.7 × 10-4, and the YIG/Pt interface allows for efficient spin transfers. This demonstration indicates the feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics studies.

Authors:
 [1];  [1];  [2];  [1];  [2];  [1]
  1. Colorado State Univ., Fort Collins, CO (United States)
  2. Univ. of Minnesota, Minneapolis, MN (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Spins and Heat in Nanoscale Electronic Systems (SHINES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470130
Alternate Identifier(s):
OSTI ID: 1411107
Grant/Contract Number:  
SC0012670
Resource Type:
Accepted Manuscript
Journal Name:
APL Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 12; Related Information: SHINES partners with University of California, Riverside (lead); Arizona State University; Colorado State University; Johns Hopkins University; University of California Irvine; University of California Los Angeles; University of Texas at Austin; Journal ID: ISSN 2166-532X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; phonons; thermal conductivity; thermoelectric; spin dynamics; spintronics

Citation Formats

Chang, Houchen, Liu, Tao, Reifsnyder Hickey, Danielle, Janantha, P. A. Praveen, Mkhoyan, K. Andre, and Wu, Mingzhong. Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces. United States: N. p., 2017. Web. doi:10.1063/1.5013626.
Chang, Houchen, Liu, Tao, Reifsnyder Hickey, Danielle, Janantha, P. A. Praveen, Mkhoyan, K. Andre, & Wu, Mingzhong. Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces. United States. https://doi.org/10.1063/1.5013626
Chang, Houchen, Liu, Tao, Reifsnyder Hickey, Danielle, Janantha, P. A. Praveen, Mkhoyan, K. Andre, and Wu, Mingzhong. Mon . "Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces". United States. https://doi.org/10.1063/1.5013626. https://www.osti.gov/servlets/purl/1470130.
@article{osti_1470130,
title = {Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces},
author = {Chang, Houchen and Liu, Tao and Reifsnyder Hickey, Danielle and Janantha, P. A. Praveen and Mkhoyan, K. Andre and Wu, Mingzhong},
abstractNote = {For the majority of previous work on Y3Fe5O12 (YIG)/normal metal (NM) bi-layered structures, the YIG layers were grown on Gd3Ga5O12 first and were then capped by an NM layer. This work demonstrates the sputtering growth of a Pt/YIG structure where the Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows well-oriented (111) texture, a surface roughness of 0.15 nm, and an effective Gilbert damping constant less than 4.7 × 10-4, and the YIG/Pt interface allows for efficient spin transfers. This demonstration indicates the feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics studies.},
doi = {10.1063/1.5013626},
journal = {APL Materials},
number = 12,
volume = 5,
place = {United States},
year = {Mon Dec 04 00:00:00 EST 2017},
month = {Mon Dec 04 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1. FIG. 1. : Structural and morphologic properties of YIG(58 nm)/Pt(14 nm)/GGG(0.5 mm). (a) HAADF-STEM cross-sectional image. (b) HAADF-STEM cross-sectional image with a scale 10 times bigger than that in (a). (c) AFM surface image. (d) XRD spectrum.

Save / Share:

Works referenced in this record:

Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films
journal, October 2012

  • Sun, Yiyan; Song, Young-Yeal; Chang, Houchen
  • Applied Physics Letters, Vol. 101, Issue 15
  • DOI: 10.1063/1.4759039

Spin-wave excitation and propagation in microstructured waveguides of yttrium iron garnet/Pt bilayers
journal, January 2014

  • Pirro, P.; Brächer, T.; Chumak, A. V.
  • Applied Physics Letters, Vol. 104, Issue 1
  • DOI: 10.1063/1.4861343

Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure
journal, April 2014

  • Fan, Yabin; Upadhyaya, Pramey; Kou, Xufeng
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat3973

Spin current injection by spin Seebeck and spin pumping effects in yttrium iron garnet/Pt structures
journal, April 2012

  • da Silva, G. L.; Vilela-Leão, L. H.; Rezende, S. M.
  • Journal of Applied Physics, Vol. 111, Issue 7
  • DOI: 10.1063/1.3676239

Structure and Intrinsic Stress of Platinum Films
journal, January 1971

  • Rottmayer, R. E.; Hoffman, R. W.
  • Journal of Vacuum Science and Technology, Vol. 8, Issue 1
  • DOI: 10.1116/1.1316268

Generation of coherent spin-wave modes in yttrium iron garnet microdiscs by spin–orbit torque
journal, January 2016

  • Collet, M.; de Milly, X.; d’Allivy Kelly, O.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10377

Inverse spin Hall effect in nanometer-thick yttrium iron garnet/Pt system
journal, August 2013

  • d'Allivy Kelly, O.; Anane, A.; Bernard, R.
  • Applied Physics Letters, Vol. 103, Issue 8
  • DOI: 10.1063/1.4819157

Nanometer-Thick Yttrium Iron Garnet Films With Extremely Low Damping
journal, January 2014


Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers
journal, March 2016

  • Li, Junxue; Xu, Yadong; Aldosary, Mohammed
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10858

Spin-current-driven thermoelectric coating
journal, June 2012

  • Kirihara, Akihiro; Uchida, Ken-ichi; Kajiwara, Yosuke
  • Nature Materials, Vol. 11, Issue 8
  • DOI: 10.1038/nmat3360

Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets
journal, April 2006


Enhanced spin Seebeck effect signal due to spin-momentum locked topological surface states
journal, May 2016

  • Jiang, Zilong; Chang, Cui-Zu; Masir, Massoud Ramezani
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11458

Magnon-based logic in a multi-terminal YIG/Pt nanostructure
journal, July 2016

  • Ganzhorn, Kathrin; Klingler, Stefan; Wimmer, Tobias
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4958893

Surface-State-Dominated Spin-Charge Current Conversion in Topological-Insulator–Ferromagnetic-Insulator Heterostructures
journal, August 2016


Transmission of electrical signals by spin-wave interconversion in a magnetic insulator
journal, March 2010


Pulsed laser deposition of epitaxial yttrium iron garnet films with low Gilbert damping and bulk-like magnetization
journal, October 2014

  • Onbasli, M. C.; Kehlberger, A.; Kim, D. H.
  • APL Materials, Vol. 2, Issue 10
  • DOI: 10.1063/1.4896936

Works referencing / citing this record:

Fabrication of yttrium–iron–garnet/Pt multilayers for the longitudinal spin Seebeck effect
journal, December 2018

  • Nozue, Tatsuhiro; Kikkawa, Takashi; Watamura, Tomoki
  • Applied Physics Letters, Vol. 113, Issue 26
  • DOI: 10.1063/1.5046977

Characterization of YIG thin films and vacuum annealing effect by polarized neutron reflectometry and magnetotransport measurements
journal, October 2019

  • Bai, He; Zhan, X. Z.; Li, Gang
  • Applied Physics Letters, Vol. 115, Issue 18
  • DOI: 10.1063/1.5124832

Magnetic properties and domain structure of ultrathin yttrium iron garnet/Pt bilayers
journal, March 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.