skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tandem Diels-Alder Reaction of Dimethylfuran and Ethylene and Dehydration to para -Xylene Catalyzed by Zeotypic Lewis Acids

Abstract

The zeotypic Lewis acids Sn-BEA, Zr-BEA, and Ti-BEA have recently been discussed to catalyze the synthesis of p-xylene by dehydrative aromatization of the Diels–Alder product between 2,5-dimethylfuran and ethylene. While it has been shown that these Lewis acids can catalyze the dehydration of the Diels–Alder cycloadduct, the tandem scheme precludes decoupling of the two steps needed to infer whether these same catalysts can catalyze the Diels–Alder step. We have employed electronic structure calculations and microkinetic modelling to investigate the Diels–Alder aromatization of 2,5-dimethylfuran and ethylene to p-xylene over the Lewis-acidic zeotypes Sn-, Zr-, and Ti-BEA. We show that there is only minor catalysis of the Diels–Alder reaction, solely attributable to confinement phenomena varying with the translational freedom allowed to the species inside the zeolite. Microkinetic modelling and sensitivity analysis of the computed rates show that the heterogeneous Diels–Alder pathway does not contribute to the overall rate, and that the homogeneous cycloaddition is rate-limiting at high acid site concentrations. Only the partially hydrolyzed (“open”) Lewis acid sites are found to be catalytically active, with moderately Brønsted-acidic silanol groups formed, which catalyze 2,5-dimethylfuran hydrolysis. Of the Lewis acids tested in this work, Zr-BEA and Sn-BEA have similar activities, in agreement with experiment,more » whereas Ti-BEA is found to be inactive, indicating that the recently reported Ti-BEA activity was likely a result of Brønsted-acidic defect sites.« less

Authors:
 [1];  [2];  [1];  [1]
  1. Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI)
  2. Univ. of Massachusetts, Amherst, MA (United States); Univ. of Delaware, Newark, DE (United States). Catalysis Center for Energy Innovation (CCEI)
Publication Date:
Research Org.:
Univ. of Delaware, Newark, DE (United States); Energy Frontier Research Center (EFRC) Catalysis Center for Energy Innovation (CCEI)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1469842
Alternate Identifier(s):
OSTI ID: 1400826
Grant/Contract Number:  
SC0001004
Resource Type:
Accepted Manuscript
Journal Name:
ChemCatChem
Additional Journal Information:
Journal Volume: 9; Journal Issue: 13; Related Information: CCEI partners with the University of Delaware (lead); Brookhaven National Laboratory; California Institute of Technology; Columbia University; University of Delaware; Lehigh University; University of Massachusetts, Amherst; Massachusetts Institute of Technology; University of Minnesota; Pacific Northwest National Laboratory; University of Pennsylvania; Princeton University; Rutgers University; Journal ID: ISSN 1867-3880
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Diels–Alder reaction; Lewis acid catalysis; microkinetic modelling; ONIOM; zeolites

Citation Formats

Patet, Ryan E., Fan, Wei, Vlachos, Dionisios G., and Caratzoulas, Stavros. Tandem Diels-Alder Reaction of Dimethylfuran and Ethylene and Dehydration to para -Xylene Catalyzed by Zeotypic Lewis Acids. United States: N. p., 2017. Web. doi:10.1002/cctc.201601584.
Patet, Ryan E., Fan, Wei, Vlachos, Dionisios G., & Caratzoulas, Stavros. Tandem Diels-Alder Reaction of Dimethylfuran and Ethylene and Dehydration to para -Xylene Catalyzed by Zeotypic Lewis Acids. United States. doi:10.1002/cctc.201601584.
Patet, Ryan E., Fan, Wei, Vlachos, Dionisios G., and Caratzoulas, Stavros. Tue . "Tandem Diels-Alder Reaction of Dimethylfuran and Ethylene and Dehydration to para -Xylene Catalyzed by Zeotypic Lewis Acids". United States. doi:10.1002/cctc.201601584. https://www.osti.gov/servlets/purl/1469842.
@article{osti_1469842,
title = {Tandem Diels-Alder Reaction of Dimethylfuran and Ethylene and Dehydration to para -Xylene Catalyzed by Zeotypic Lewis Acids},
author = {Patet, Ryan E. and Fan, Wei and Vlachos, Dionisios G. and Caratzoulas, Stavros},
abstractNote = {The zeotypic Lewis acids Sn-BEA, Zr-BEA, and Ti-BEA have recently been discussed to catalyze the synthesis of p-xylene by dehydrative aromatization of the Diels–Alder product between 2,5-dimethylfuran and ethylene. While it has been shown that these Lewis acids can catalyze the dehydration of the Diels–Alder cycloadduct, the tandem scheme precludes decoupling of the two steps needed to infer whether these same catalysts can catalyze the Diels–Alder step. We have employed electronic structure calculations and microkinetic modelling to investigate the Diels–Alder aromatization of 2,5-dimethylfuran and ethylene to p-xylene over the Lewis-acidic zeotypes Sn-, Zr-, and Ti-BEA. We show that there is only minor catalysis of the Diels–Alder reaction, solely attributable to confinement phenomena varying with the translational freedom allowed to the species inside the zeolite. Microkinetic modelling and sensitivity analysis of the computed rates show that the heterogeneous Diels–Alder pathway does not contribute to the overall rate, and that the homogeneous cycloaddition is rate-limiting at high acid site concentrations. Only the partially hydrolyzed (“open”) Lewis acid sites are found to be catalytically active, with moderately Brønsted-acidic silanol groups formed, which catalyze 2,5-dimethylfuran hydrolysis. Of the Lewis acids tested in this work, Zr-BEA and Sn-BEA have similar activities, in agreement with experiment, whereas Ti-BEA is found to be inactive, indicating that the recently reported Ti-BEA activity was likely a result of Brønsted-acidic defect sites.},
doi = {10.1002/cctc.201601584},
journal = {ChemCatChem},
number = 13,
volume = 9,
place = {United States},
year = {2017},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Die Polarität etherischer Lithiumperchlorat-Lösungen
journal, April 1986


Catalysis Center for Energy Innovation for Biomass Processing: Research Strategies and Goals
journal, October 2010

  • Vlachos, Dionisios G.; Chen, Jingguang G.; Gorte, Raymond J.
  • Catalysis Letters, Vol. 140, Issue 3-4
  • DOI: 10.1007/s10562-010-0455-4

A quantum theory of molecular structure and its applications
journal, July 1991


Biomass at the shale gas crossroads
journal, January 2014

  • Dauenhauer, Paul J.; Huber, George W.
  • Green Chemistry, Vol. 16, Issue 2
  • DOI: 10.1039/c4gc90001d

Bulk chemicals from biomass
journal, January 2008

  • Haveren, Jacco van; Scott, Elinor L.; Sanders, Johan
  • Biofuels, Bioproducts and Biorefining, Vol. 2, Issue 1
  • DOI: 10.1002/bbb.43

A DFT study of the acid-catalyzed conversion of 2,5-dimethylfuran and ethylene to p-xylene
journal, January 2013


UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

The Conservation of Orbital Symmetry
journal, November 1969

  • Woodward, R. B.; Hoffmann, Roald
  • Angewandte Chemie International Edition in English, Vol. 8, Issue 11
  • DOI: 10.1002/anie.196907811

An Enantioselective Inverse-Electron-Demand Imino Diels-Alder Reaction
journal, January 2014

  • Eschenbrenner-Lux, Vincent; Küchler, Philipp; Ziegler, Slava
  • Angewandte Chemie, Vol. 126, Issue 8
  • DOI: 10.1002/ange.201309022

Diels–Alder cycloaddition of 2-methylfuran and ethylene for renewable toluene
journal, January 2016


Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals
journal, February 2009

  • Binder, Joseph B.; Raines, Ronald T.
  • Journal of the American Chemical Society, Vol. 131, Issue 5, p. 1979-1985
  • DOI: 10.1021/ja808537j

Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural
journal, May 2014

  • Pacheco, J. J.; Davis, M. E.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 23
  • DOI: 10.1073/pnas.1408345111

A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives
journal, April 1999


Density functional theory study of the Lewis acid-catalyzed Diels-Alder reaction of nitroalkenes with vinyl ethers using aluminum derivatives
journal, January 2002

  • Domingo, Luis R.; Asensio, Amparo; Arroyo, Pau
  • Journal of Physical Organic Chemistry, Vol. 15, Issue 9
  • DOI: 10.1002/poc.529

Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes
journal, September 2010


The Path Forward for Biofuels and Biomaterials
journal, January 2006

  • Ragauskas, Arthur J.; Williams, Charlotte K.; Davison, Brian H.
  • Science, Vol. 311, Issue 5760, p. 484-489
  • DOI: 10.1126/science.1114736

Cycloaddition of Biomass-Derived Furans for Catalytic Production of Renewable p -Xylene
journal, April 2012

  • Williams, C. Luke; Chang, Chun-Chih; Do, Phuong
  • ACS Catalysis, Vol. 2, Issue 6
  • DOI: 10.1021/cs300011a

Lewis acid catalysis of Diels-Alder reactions
journal, June 1973

  • Houk, K. N.; Strozier, R. W.
  • Journal of the American Chemical Society, Vol. 95, Issue 12
  • DOI: 10.1021/ja00793a070

Elucidation of Diels–Alder Reaction Network of 2,5-Dimethylfuran and Ethylene on HY Zeolite Catalyst
journal, December 2012

  • Do, Phuong T. M.; McAtee, Jesse R.; Watson, Donald A.
  • ACS Catalysis, Vol. 3, Issue 1
  • DOI: 10.1021/cs300673b

Recognition of stereochemical paths by orbital interaction
journal, February 1971


NBO 6.0 : Natural bond orbital analysis program
journal, March 2013

  • Glendening, Eric D.; Landis, Clark R.; Weinhold, Frank
  • Journal of Computational Chemistry, Vol. 34, Issue 16
  • DOI: 10.1002/jcc.23266

Green and sustainable manufacture of chemicals from biomass: state of the art
journal, January 2014


“Turning Over” Definitions in Catalytic Cycles
journal, November 2012

  • Kozuch, Sebastian; Martin, Jan M. L.
  • ACS Catalysis, Vol. 2, Issue 12
  • DOI: 10.1021/cs3005264

The ONIOM Method and Its Applications
journal, April 2015

  • Chung, Lung Wa; Sameera, W. M. C.; Ramozzi, Romain
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr5004419

Kinetic Regime Change in the Tandem Dehydrative Aromatization of Furan Diels–Alder Products
journal, March 2015

  • Patet, Ryan E.; Nikbin, Nima; Williams, C. Luke
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/cs5020783

Die Erhaltung der Orbitalsymmetrie
journal, November 1969


Adsorption and reaction properties of SnBEA, ZrBEA and H-BEA for the formation of p-xylene from DMF and ethylene
journal, January 2016

  • Yu, Jingye; Zhu, Shiyu; Dauenhauer, Paul J.
  • Catalysis Science & Technology, Vol. 6, Issue 14
  • DOI: 10.1039/C6CY00501B

Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis
journal, July 2004


Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions
journal, May 2002


On the Brønsted Acid-Catalyzed Homogeneous Hydrolysis of Furans
journal, September 2013

  • Nikbin, Nima; Caratzoulas, Stavros; Vlachos, Dionisios G.
  • ChemSusChem, Vol. 6, Issue 11
  • DOI: 10.1002/cssc.201300432

Understanding the mechanism of polar Diels–Alder reactions
journal, January 2009

  • Domingo, Luis R.; Sáez, José A.
  • Organic & Biomolecular Chemistry, Vol. 7, Issue 17
  • DOI: 10.1039/b909611f

Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose
journal, May 2014

  • Bermejo-Deval, Ricardo; Orazov, Marat; Gounder, Rajamani
  • ACS Catalysis, Vol. 4, Issue 7, p. 2288-2297
  • DOI: 10.1021/cs500466j

Why do Electron-Deficient Dienes React Rapidly in Diels?Alder Reactions with Electron-Deficient Ethylenes? A Density Functional Theory Analysis
journal, December 2004


Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
journal, June 2007

  • Román-Leshkov, Yuriy; Barrett, Christopher J.; Liu, Zhen Y.
  • Nature, Vol. 447, Issue 7147, p. 982-985
  • DOI: 10.1038/nature05923

Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts
journal, January 2011

  • Climent, Maria J.; Corma, Avelino; Iborra, Sara
  • Green Chemistry, Vol. 13, Issue 3
  • DOI: 10.1039/c0gc00639d

Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory
journal, July 2012


Adsorption in zeolites using mechanically embedded ONIOM clusters
journal, January 2016

  • Patet, Ryan E.; Caratzoulas, Stavros; Vlachos, Dionisios G.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 37
  • DOI: 10.1039/C6CP03266D

Role of Frontier Orbitals in Chemical Reactions
journal, November 1982


Generalized frontier orbitals of alkenes and dienes. Regioselectivity in Diels-Alder reactions
journal, June 1973

  • Houk, K. N.
  • Journal of the American Chemical Society, Vol. 95, Issue 12
  • DOI: 10.1021/ja00793a069

Conceptual Density Functional Theory
journal, May 2003

  • Geerlings, P.; De Proft, F.; Langenaeker, W.
  • Chemical Reviews, Vol. 103, Issue 5
  • DOI: 10.1021/cr990029p

p- Xylene Formation by Dehydrative Aromatization of a Diels–Alder Product in Lewis and Brønsted Acidic Zeolites
journal, October 2014

  • Nikbin, Nima; Feng, Shuting; Caratzoulas, Stavros
  • The Journal of Physical Chemistry C, Vol. 118, Issue 42
  • DOI: 10.1021/jp506027f

Chemical Routes for the Transformation of Biomass into Chemicals
journal, June 2007

  • Corma, Avelino; Iborra, Sara; Velty, Alexandra
  • Chemical Reviews, Vol. 107, Issue 6, p. 2411-2502
  • DOI: 10.1021/cr050989d

p -Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development
journal, June 2013

  • Tomás, Rogério A. F.; Bordado, João C. M.; Gomes, João F. P.
  • Chemical Reviews, Vol. 113, Issue 10
  • DOI: 10.1021/cr300298j

A Combined Kinetic−Quantum Mechanical Model for Assessment of Catalytic Cycles:  Application to Cross-Coupling and Heck Reactions
journal, March 2006

  • Kozuch, Sebastian; Shaik, Sason
  • Journal of the American Chemical Society, Vol. 128, Issue 10
  • DOI: 10.1021/ja0559146

Adsorption of C2−C8 n -Alkanes in Zeolites
journal, September 2010

  • De Moor, Bart A.; Reyniers, Marie-Françoise; Gobin, Oliver C.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 4
  • DOI: 10.1021/jp106536m

How to Conceptualize Catalytic Cycles? The Energetic Span Model
journal, February 2011

  • Kozuch, Sebastian; Shaik, Sason
  • Accounts of Chemical Research, Vol. 44, Issue 2
  • DOI: 10.1021/ar1000956

Re-investigation of titanium silicalite by X-ray absorption spectroscopy: Are the novel titanium sites real?
journal, January 1993

  • Pei, S.; Zajac, G. W.; Kaduk, J. A.
  • Catalysis Letters, Vol. 21, Issue 3-4
  • DOI: 10.1007/BF00769485

Electrophilicity Index
journal, June 2006

  • Chattaraj, Pratim Kumar; Sarkar, Utpal; Roy, Debesh Ranjan
  • Chemical Reviews, Vol. 106, Issue 6
  • DOI: 10.1021/cr040109f

Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite
journal, January 1998

  • Blasco, T.; Camblor, M. A.; Corma, A.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 1
  • DOI: 10.1021/jp973288w

Lewis acid zeolites for tandem Diels–Alder cycloaddition and dehydration of biomass-derived dimethylfuran and ethylene to renewable p-xylene
journal, January 2016

  • Chang, Chun-Chih; Je Cho, Hong; Yu, Jingye
  • Green Chemistry, Vol. 18, Issue 5
  • DOI: 10.1039/C5GC02164B

Quantitative Characterization of the Local Electrophilicity of Organic Molecules. Understanding the Regioselectivity on Diels−Alder Reactions
journal, July 2002

  • Domingo, Luis R.; Aurell, M. José; Pérez, Patricia
  • The Journal of Physical Chemistry A, Vol. 106, Issue 29
  • DOI: 10.1021/jp020715j

Acceleration and selectivity enhancement of Diels-Alder reactions by special and catalytic methods
journal, March 1993

  • Pindur, Ulf.; Lutz, Gundula.; Otto, Christian.
  • Chemical Reviews, Vol. 93, Issue 2
  • DOI: 10.1021/cr00018a006

Catalysis by framework zinc in silica-based molecular sieves
journal, January 2016


An Enantioselective Inverse-Electron-Demand Imino Diels-Alder Reaction
journal, January 2014

  • Eschenbrenner-Lux, Vincent; Küchler, Philipp; Ziegler, Slava
  • Angewandte Chemie International Edition, Vol. 53, Issue 8
  • DOI: 10.1002/anie.201309022

Frontier molecular orbital theory of cycloaddition reactions
journal, November 1975


DFT Study of Solvent Effects in Acid-Catalyzed Diels–Alder Cycloadditions of 2,5-Dimethylfuran and Maleic Anhydride
journal, August 2015

  • Salavati-fard, Taha; Caratzoulas, Stavros; Doren, Douglas J.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 38
  • DOI: 10.1021/acs.jpca.5b05060

A perspective on the modeling of biomass processing
journal, January 2012

  • Guo, Na; Caratzoulas, Stavros; Doren, Douglas J.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee02663e

Ultra-selective cycloaddition of dimethylfuran for renewable p-xylene with H-BEA
journal, January 2014

  • Chang, Chun-Chih; Green, Sara K.; Williams, C. Luke
  • Green Chem., Vol. 16, Issue 2
  • DOI: 10.1039/C3GC40740C