skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery

Abstract

Li3VP3O9N was for the first time synthesized from its sodium analogue Na3VP3O9N using a solid–solid Li+/Na+ ion-exchange method. This lithium variant of nitridophosphate is found to possess similar crystal structure (space group P213) as its sodium analogue Na3VP3O9N (a = 9.4507(1) Å) but with much smaller lattice parameter (a = 9.1237(1) Å). The crystal structure of Li3VP3O9N was solved and refined using combined synchrotron X-ray and time-of-flight neutron powder diffraction data, allowing the three distinct lithium-ion sites to be identified. A lithium bond valence sum difference map calculation suggests the existence of isotropic three-dimensional lithium-ion-conducting pathways with a minimum valence threshold |ΔV| of 0.02. Li3VP3O9N behaves as a promising reversible cathode material for rechargeable lithium-ion batteries with an average V3+/V4+ redox potential of 3.8 V (vs Li+/Li). Both cyclic voltammetry tests and chemical delithiation (using NO2BF4) indicate it is possible to partially remove the second lithium from the structure, though only at very high potentials (>4.9 V vs Li+/Li). It is also found that the unit cell volume of this compound expands instead of shrinking upon lithium removal, a rare phenomenon for polyanion-based cathodes. This abnormal volume expansion is found to be associated with the drastic expansion of the Li1(O1)3Nmore » tetrahedral site after removing lithium from this site.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States)
  2. Stony Brook Univ., NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES); Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1469792
Report Number(s):
BNL-209033-2018-JAAM
Journal ID: ISSN 0897-4756
Grant/Contract Number:  
SC0012704
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 14; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Liu, Jue, Yin, Liang, Yang, Xiao-Qing, and Khalifah, Peter G. Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery. United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.8b01114.
Liu, Jue, Yin, Liang, Yang, Xiao-Qing, & Khalifah, Peter G. Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery. United States. doi:https://doi.org/10.1021/acs.chemmater.8b01114
Liu, Jue, Yin, Liang, Yang, Xiao-Qing, and Khalifah, Peter G. Wed . "Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery". United States. doi:https://doi.org/10.1021/acs.chemmater.8b01114. https://www.osti.gov/servlets/purl/1469792.
@article{osti_1469792,
title = {Li3VP3O9N as a Multielectron Redox Cathode for Li-Ion Battery},
author = {Liu, Jue and Yin, Liang and Yang, Xiao-Qing and Khalifah, Peter G.},
abstractNote = {Li3VP3O9N was for the first time synthesized from its sodium analogue Na3VP3O9N using a solid–solid Li+/Na+ ion-exchange method. This lithium variant of nitridophosphate is found to possess similar crystal structure (space group P213) as its sodium analogue Na3VP3O9N (a = 9.4507(1) Å) but with much smaller lattice parameter (a = 9.1237(1) Å). The crystal structure of Li3VP3O9N was solved and refined using combined synchrotron X-ray and time-of-flight neutron powder diffraction data, allowing the three distinct lithium-ion sites to be identified. A lithium bond valence sum difference map calculation suggests the existence of isotropic three-dimensional lithium-ion-conducting pathways with a minimum valence threshold |ΔV| of 0.02. Li3VP3O9N behaves as a promising reversible cathode material for rechargeable lithium-ion batteries with an average V3+/V4+ redox potential of 3.8 V (vs Li+/Li). Both cyclic voltammetry tests and chemical delithiation (using NO2BF4) indicate it is possible to partially remove the second lithium from the structure, though only at very high potentials (>4.9 V vs Li+/Li). It is also found that the unit cell volume of this compound expands instead of shrinking upon lithium removal, a rare phenomenon for polyanion-based cathodes. This abnormal volume expansion is found to be associated with the drastic expansion of the Li1(O1)3N tetrahedral site after removing lithium from this site.},
doi = {10.1021/acs.chemmater.8b01114},
journal = {Chemistry of Materials},
number = 14,
volume = 30,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: X-ray diffraction patterns of LixNa3−xVP3O9N collected before starting and after each ion-exchange (IE) process. The zooming (111) reflections are shown on the right side; the initial phase, second phase, and third phase are labeled as A, B, and C, respectively.

Save / Share:

Works referenced in this record:

Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries
journal, June 2013

  • Masquelier, Christian; Croguennec, Laurence
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr3001862

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Thermal Stability of LiFePO[sub 4]-Based Cathodes
journal, January 1999

  • Andersson, Anna S.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 2
  • DOI: 10.1149/1.1390960

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model
journal, July 2008

  • Delmas, C.; Maccario, M.; Croguennec, L.
  • Nature Materials, Vol. 7, Issue 8
  • DOI: 10.1038/nmat2230

Approaching Theoretical Capacity of LiFePO[sub 4] at Room Temperature at High Rates
journal, January 2001

  • Huang, H.; Yin, S. -C.; Nazar, L. F.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 10
  • DOI: 10.1149/1.1396695

Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes
journal, June 2014


Structure and Lithium Transport Pathways in Li 2 FeSiO 4 Cathodes for Lithium Batteries
journal, August 2011

  • Armstrong, A. Robert; Kuganathan, Navaratnarajah; Islam, M. Saiful
  • Journal of the American Chemical Society, Vol. 133, Issue 33
  • DOI: 10.1021/ja2018543

Structure of Li 2 FeSiO 4
journal, October 2008

  • Nishimura, Shin-ichi; Hayase, Shogo; Kanno, Ryoji
  • Journal of the American Chemical Society, Vol. 130, Issue 40
  • DOI: 10.1021/ja805543p

A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries
journal, September 2007

  • Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.
  • Nature Materials, Vol. 6, Issue 10
  • DOI: 10.1038/nmat2007

A Symmetrical Lithium-Ion Cell Based on Lithium Vanadium Fluorophosphate, LiVPO[sub 4]F
journal, January 2005

  • Barker, J.; Gover, R. K. B.; Burns, P.
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 6
  • DOI: 10.1149/1.1897352

Layered Lithium Vanadium Fluorophosphate, Li 5 V(PO 4 ) 2 F 2 : A 4 V Class Positive Electrode Material for Lithium-Ion Batteries
journal, July 2008

  • Makimura, Y.; Cahill, L. S.; Iriyama, Y.
  • Chemistry of Materials, Vol. 20, Issue 13
  • DOI: 10.1021/cm702346n

A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries
journal, November 2009

  • Recham, N.; Chotard, J-N.; Dupont, L.
  • Nature Materials, Vol. 9, Issue 1
  • DOI: 10.1038/nmat2590

Hunting for Better Li-Based Electrode Materials via Low Temperature Inorganic Synthesis
journal, February 2010

  • Tarascon, Jean-Marie; Recham, Nadir; Armand, Michel
  • Chemistry of Materials, Vol. 22, Issue 3
  • DOI: 10.1021/cm9030478

Sidorenkite (Na 3 MnPO 4 CO 3 ): A New Intercalation Cathode Material for Na-Ion Batteries
journal, July 2013

  • Chen, Hailong; Hao, Qing; Zivkovic, Olivera
  • Chemistry of Materials, Vol. 25, Issue 14
  • DOI: 10.1021/cm400805q

Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally
journal, May 2012

  • Chen, Hailong; Hautier, Geoffroy; Jain, Anubhav
  • Chemistry of Materials, Vol. 24, Issue 11
  • DOI: 10.1021/cm203243x

Li 2.5 V 2 (PO 4 ) 3 :  A Room-Temperature Analogue to the Fast-Ion Conducting High-Temperature γ-Phase of Li 3 V 2 (PO 4 ) 3
journal, April 2004

  • Yin, S. -C.; Strobel, P. S.; Grondey, H.
  • Chemistry of Materials, Vol. 16, Issue 8
  • DOI: 10.1021/cm034802f

Synthesis and Crystallographic Study of Homeotypic LiVPO 4 F and LiVPO 4 O
journal, February 2012

  • Ateba Mba, Jean-Marcel; Masquelier, Christian; Suard, Emmanuelle
  • Chemistry of Materials, Vol. 24, Issue 6
  • DOI: 10.1021/cm3003996

Ionic Conduction in Cubic Na 3 TiP 3 O 9 N, a Secondary Na-Ion Battery Cathode with Extremely Low Volume Change
journal, May 2014

  • Liu, Jue; Chang, Donghee; Whitfield, Pamela
  • Chemistry of Materials, Vol. 26, Issue 10
  • DOI: 10.1021/cm5011218

New 4V-Class and Zero-Strain Cathode Material for Na-Ion Batteries
journal, September 2017


Sodium vanadium nitridophosphate Na3V(PO3)3N as a high-voltage positive electrode material for Na-ion and Li-ion batteries
journal, November 2017


In Situ Neutron Diffraction Studies of the Ion Exchange Synthesis Mechanism of Li 2 Mg 2 P 3 O 9 N: Evidence for a Hidden Phase Transition
journal, June 2017

  • Liu, Jue; Whitfield, Pamela S.; Saccomanno, Michael R.
  • Journal of the American Chemical Society, Vol. 139, Issue 27
  • DOI: 10.1021/jacs.7b02323

Divalent Iron Nitridophosphates: A New Class of Cathode Materials for Li-Ion Batteries
journal, September 2013

  • Liu, Jue; Yu, Xiqian; Hu, Enyuan
  • Chemistry of Materials, Vol. 25, Issue 20
  • DOI: 10.1021/cm402567e

Les Phosphates Azotés Cristallisés de Type Na3AlP3O9N et Na2Mg2P3O9N
journal, February 1996

  • Conanec, Roland; Feldmann, Walter; Marchand, Roger
  • Journal of Solid State Chemistry, Vol. 121, Issue 2
  • DOI: 10.1006/jssc.1996.0057

Synchrotron powder study of Na 3 V(PO 3 ) 3 N
journal, May 2013

  • Kim, Minwoong; Kim, Seung-Joo
  • Acta Crystallographica Section E Structure Reports Online, Vol. 69, Issue 6
  • DOI: 10.1107/S1600536813012427

The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS
journal, September 2012

  • Neuefeind, Jörg; Feygenson, Mikhail; Carruth, John
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 287
  • DOI: 10.1016/j.nimb.2012.05.037

Fundamental parameters line profile fitting in laboratory diffractometers
journal, January 2004

  • Cheary, R. W.; Coelho, A. A.; Cline, J. P.
  • Journal of Research of the National Institute of Standards and Technology, Vol. 109, Issue 1
  • DOI: 10.6028/jres.109.002

Crystallographic Computing System JANA2006: General features
journal, January 2014

  • Petříček, Václav; Dušek, Michal; Palatinus, Lukáš
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 229, Issue 5
  • DOI: 10.1515/zkri-2014-1737

Fast synthesis and refinement of the atomic pair distribution function
journal, May 2015


PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


SUPERFLIP – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions
journal, July 2007


Bond-valence parameters for solids
journal, April 1991

  • Brese, N. E.; O'Keeffe, M.
  • Acta Crystallographica Section B Structural Science, Vol. 47, Issue 2
  • DOI: 10.1107/S0108768190011041

Crystal Structure Revision and Identification of Li + -Ion Migration Pathways in the Garnet-like Li 5 La 3 M 2 O 12 (M = Nb, Ta) Oxides
journal, August 2004

  • Thangadurai, Venkataraman; Adams, Stefan; Weppner, Werner
  • Chemistry of Materials, Vol. 16, Issue 16
  • DOI: 10.1021/cm031176d

Relationship between bond valence and bond softness of alkali halides and chalcogenides
journal, May 2001


Studies of LiMn[sub 2]O[sub 4] Capacity Fading at Elevated Temperature Using In Situ Synchrotron X-Ray Diffraction
journal, January 2006

  • Chung, Kyung Yoon; Lee, Hung Sui; Yoon, Won-Sub
  • Journal of The Electrochemical Society, Vol. 153, Issue 4
  • DOI: 10.1149/1.2172565

    Works referencing / citing this record:

    CSD 1860617: Experimental Crystal Structure Determination: Non-CSD Structure
    dataset, August 2018


    CSD 1860616: Experimental Crystal Structure Determination: Non-CSD Structure
    dataset, August 2018


    Development and Investigation of a NASICON‐Type High‐Voltage Cathode Material for High‐Power Sodium‐Ion Batteries
    journal, December 2019


    Rational synthesis and electrochemical performance of LiVOPO 4 polymorphs
    journal, January 2019

    • Hidalgo, Marc Francis V.; Lin, Yuh-Chieh; Grenier, Antonin
    • Journal of Materials Chemistry A, Vol. 7, Issue 14
    • DOI: 10.1039/c8ta12531g

    Development and Investigation of a NASICON‐Type High‐Voltage Cathode Material for High‐Power Sodium‐Ion Batteries
    journal, February 2020

    • Chen, Mingzhe; Hua, Weibo; Xiao, Jin
    • Angewandte Chemie International Edition, Vol. 59, Issue 6
    • DOI: 10.1002/anie.201912964