skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Attosecond time–energy structure of X-ray free-electron laser pulses

Abstract

Here, the time–energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

Authors:
 [1];  [2];  [3];  [3];  [4]; ORCiD logo [5];  [6];  [7]; ORCiD logo [8];  [4];  [8];  [4];  [4]; ORCiD logo [4];  [4];  [4];  [8];  [4];  [9];  [10] more »;  [11];  [12];  [13];  [4]; ORCiD logo [14] « less
  1. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Bern, Bern (Switzerland); Coherent Inc., Santa Clara, CA (United States)
  2. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. Kassel, Kassel (Germany)
  3. Technische Univ. Munchen, Garching (Germany)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European XFEL GmbH, Schenefeld (Germany)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Gothenburg, Gothenburg (Sweden); Qamcom Research & Technology AB, Goteborg (Sweden)
  7. Univ. of Colorado, Boulder, CO (United States)
  8. European XFEL GmbH, Schenefeld (Germany)
  9. Univ. of the Basque Country UPV/EHU, San Sebastian/Donostia (Spain); Donostia International Physics Center (DIPC), San Sebastian/Donostia (Spain); IKERBASQUE, Bilbao (Spain)
  10. European XFEL GmbH, Schenefeld (Germany); Lomonosov Moscow State Univ., Moscow (Russia)
  11. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  12. Univ. of Bern, Bern (Switzerland)
  13. Technische Univ. Munchen, Garching (Germany); Max-Planck-Institut fur Quantenoptik, Garching (Germany)
  14. SLAC National Accelerator Lab., Menlo Park, CA (United States); Technische Univ. Munchen, Garching (Germany); Ludwig-Maximilians-Univ. Munchen, Garching (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1469768
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Photonics
Additional Journal Information:
Journal Volume: 12; Journal Issue: 4; Journal ID: ISSN 1749-4885
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Hartmann, N., Hartmann, G., Heider, R., Wagner, M. S., Ilchen, M., Buck, J., Lindahl, A. O., Benko, C., Grünert, J., Krzywinski, J., Liu, J., Lutman, A. A., Marinelli, A., Maxwell, T., Miahnahri, A. A., Moeller, S. P., Planas, M., Robinson, J., Kazansky, A. K., Kabachnik, N. M., Viefhaus, J., Feurer, T., Kienberger, R., Coffee, R. N., and Helml, W. Attosecond time–energy structure of X-ray free-electron laser pulses. United States: N. p., 2018. Web. doi:10.1038/s41566-018-0107-6.
Hartmann, N., Hartmann, G., Heider, R., Wagner, M. S., Ilchen, M., Buck, J., Lindahl, A. O., Benko, C., Grünert, J., Krzywinski, J., Liu, J., Lutman, A. A., Marinelli, A., Maxwell, T., Miahnahri, A. A., Moeller, S. P., Planas, M., Robinson, J., Kazansky, A. K., Kabachnik, N. M., Viefhaus, J., Feurer, T., Kienberger, R., Coffee, R. N., & Helml, W. Attosecond time–energy structure of X-ray free-electron laser pulses. United States. doi:10.1038/s41566-018-0107-6.
Hartmann, N., Hartmann, G., Heider, R., Wagner, M. S., Ilchen, M., Buck, J., Lindahl, A. O., Benko, C., Grünert, J., Krzywinski, J., Liu, J., Lutman, A. A., Marinelli, A., Maxwell, T., Miahnahri, A. A., Moeller, S. P., Planas, M., Robinson, J., Kazansky, A. K., Kabachnik, N. M., Viefhaus, J., Feurer, T., Kienberger, R., Coffee, R. N., and Helml, W. Mon . "Attosecond time–energy structure of X-ray free-electron laser pulses". United States. doi:10.1038/s41566-018-0107-6. https://www.osti.gov/servlets/purl/1469768.
@article{osti_1469768,
title = {Attosecond time–energy structure of X-ray free-electron laser pulses},
author = {Hartmann, N. and Hartmann, G. and Heider, R. and Wagner, M. S. and Ilchen, M. and Buck, J. and Lindahl, A. O. and Benko, C. and Grünert, J. and Krzywinski, J. and Liu, J. and Lutman, A. A. and Marinelli, A. and Maxwell, T. and Miahnahri, A. A. and Moeller, S. P. and Planas, M. and Robinson, J. and Kazansky, A. K. and Kabachnik, N. M. and Viefhaus, J. and Feurer, T. and Kienberger, R. and Coffee, R. N. and Helml, W.},
abstractNote = {Here, the time–energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.},
doi = {10.1038/s41566-018-0107-6},
journal = {Nature Photonics},
number = 4,
volume = 12,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Angular streaking resolves the X-ray pulse structure via angle-dependent kinetic energy changes of photoelectrons. X-ray pulses ionize the target gas in the centre of the detector . The concomitant rotating IR laser field modifies the kinetic energy of the photoelectrons depending on their ionization time. Three individual X-raymore » pulses, denominated as shots 1, 2 and 3, overlap in the detection area (dashed orange rectangle, magnified picture on the right) with three IR pulses at different phases of their circularly polarized field and generate clearly distinguishable photoelectron time-energy distributions, shown as false colour polar plots of experimental data . In these plots, the intensity is proportional to the number of photoelectrons, the distance from the centre represents the kinetic energy of the photoelectrons, and the angle along the circle corresponds to the IR phase during photoionization by the X-ray pulse. The intensity structure and pulse duration Ci- m ) of each X-ray pulse can be read from these distributions, similar to reading from a clock face.« less

Save / Share:

Works referenced in this record:

Atomic transient recorder
journal, February 2004

  • Kienberger, R.; Goulielmakis, E.; Uiberacker, M.
  • Nature, Vol. 427, Issue 6977
  • DOI: 10.1038/nature02277

Single mimivirus particles intercepted and imaged with an X-ray laser
journal, February 2011

  • Seibert, M. Marvin; Ekeberg, Tomas; Maia, Filipe R. N. C.
  • Nature, Vol. 470, Issue 7332
  • DOI: 10.1038/nature09748

Proposal for Intense Attosecond Radiation from an X-Ray Free-Electron Laser
journal, June 2004


The physics of x-ray free-electron lasers
journal, March 2016


Attosecond metrology: from electron capture to future signal processing
journal, February 2014


Attosecond Ionization and Tunneling Delay Time Measurements in Helium
journal, December 2008


Angular streaking and sideband formation in rotating terahertz and far-infrared fields
journal, April 2017

  • Kazansky, A. K.; Sazhina, I. P.; Nosik, V. L.
  • Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 50, Issue 10
  • DOI: 10.1088/1361-6455/aa69e9

Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning
journal, June 2017

  • Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15461

Attosecond angular streaking
journal, May 2008

  • Eckle, Petrissa; Smolarski, Mathias; Schlup, Philip
  • Nature Physics, Vol. 4, Issue 7
  • DOI: 10.1038/nphys982

Tracking excited-state charge and spin dynamics in iron coordination complexes
journal, May 2014

  • Zhang, Wenkai; Alonso-Mori, Roberto; Bergmann, Uwe
  • Nature, Vol. 509, Issue 7500
  • DOI: 10.1038/nature13252

Few-femtosecond time-resolved measurements of X-ray free-electron lasers
journal, April 2014

  • Behrens, C.; Decker, F. -J.; Ding, Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4762

X-ray Pulses Approaching the Attosecond Frontier
journal, February 2001


Angle-resolved electron spectra in short-pulse two-color XUV + IR photoionization of atoms
journal, September 2010


Determination of the Pulse Duration of an X-Ray Free Electron Laser Using Highly Resolved Single-Shot Spectra
journal, October 2012


Hard X-ray free-electron laser with femtosecond-scale timing jitter
journal, October 2017


Methods for the measurement of the duration of high-harmonic pulses
journal, November 1997

  • Constant, Eric; Taranukhin, Vladimir D.; Stolow, Albert
  • Physical Review A, Vol. 56, Issue 5
  • DOI: 10.1103/PhysRevA.56.3870

SwissFEL: The Swiss X-ray Free Electron Laser
journal, July 2017

  • Milne, Christopher; Schietinger, Thomas; Aiba, Masamitsu
  • Applied Sciences, Vol. 7, Issue 7
  • DOI: 10.3390/app7070720

Sub-femtosecond precision measurement of relative X-ray arrival time for free-electron lasers
journal, July 2014


Time-Resolved Phase Measurement of a Self-Amplified Free-Electron Laser
journal, November 2002


Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser
journal, March 2012

  • Behrens, C.; Gerasimova, N.; Gerth, Ch.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 15, Issue 3
  • DOI: 10.1103/PhysRevSTAB.15.030707

Femtosecond x-ray free electron laser pulse duration measurement from spectral correlation function
journal, March 2012


Polarization control in an X-ray free-electron laser
journal, May 2016

  • Lutman, Alberto A.; MacArthur, James P.; Ilchen, Markus
  • Nature Photonics, Vol. 10, Issue 7
  • DOI: 10.1038/nphoton.2016.79

Attosecond Streak Camera
journal, April 2002


Measurement and laser control of attosecond charge migration in ionized iodoacetylene
journal, October 2015


Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter
journal, October 2013


Femtosecond and Subfemtosecond X-Ray Pulses from a Self-Amplified Spontaneous-Emission–Based Free-Electron Laser
journal, February 2004


Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses
journal, August 2014

  • Bionta, M. R.; Hartmann, N.; Weaver, M.
  • Review of Scientific Instruments, Vol. 85, Issue 8
  • DOI: 10.1063/1.4893657

The European X-ray free-electron laser facility in Hamburg
journal, December 2011

  • Altarelli, M.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 269, Issue 24
  • DOI: 10.1016/j.nimb.2011.04.034

Delay in Photoemission
journal, June 2010


Controlling dielectrics with the electric field of light
journal, December 2012

  • Schultze, Martin; Bothschafter, Elisabeth M.; Sommer, Annkatrin
  • Nature, Vol. 493, Issue 7430
  • DOI: 10.1038/nature11720

A compact X-ray free-electron laser emitting in the sub-ångström region
journal, June 2012


Fresh-slice multicolour X-ray free-electron lasers
journal, October 2016

  • Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.
  • Nature Photonics, Vol. 10, Issue 11
  • DOI: 10.1038/nphoton.2016.201

Tailoring the amplification of attosecond pulse through detuned X-ray FEL undulator
journal, January 2015

  • Kumar, Sandeep; Kang, Heung-Sik; Kim, Dong Eon
  • Optics Express, Vol. 23, Issue 3
  • DOI: 10.1364/OE.23.002808

First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


The direct evaluation of attosecond chirp from a streaking measurement
journal, January 2011


Measuring the temporal structure of few-femtosecond free-electron laser X-ray pulses directly in the time domain
journal, November 2014


Ultrashort Free-Electron Laser X-ray Pulses
journal, September 2017

  • Helml, Wolfram; Grguraš, Ivanka; Juranić, Pavle
  • Applied Sciences, Vol. 7, Issue 9
  • DOI: 10.3390/app7090915

Real-time observation of valence electron motion
journal, August 2010

  • Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian
  • Nature, Vol. 466, Issue 7307
  • DOI: 10.1038/nature09212

Femtosecond electronic response of atoms to ultra-intense X-rays
journal, July 2010


Two-stage seeded soft-X-ray free-electron laser
journal, October 2013


Femtosecond X-Ray Pulse Characterization in Free-Electron Lasers Using a Cross-Correlation Technique
journal, December 2012


Attosecond spectroscopy in condensed matter
journal, October 2007

  • Cavalieri, A. L.; Müller, N.; Uphues, Th.
  • Nature, Vol. 449, Issue 7165
  • DOI: 10.1038/nature06229

Probing Proton Dynamics in Molecules on an Attosecond Time Scale
journal, March 2006


Optical Shaping of X-Ray Free-Electron Lasers
journal, June 2016


Coherent control with a short-wavelength free-electron laser
journal, February 2016


Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser
journal, May 2003


Ultrafast X-ray pulse characterization at free-electron lasers
journal, November 2012


Interference effects in angular streaking with a rotating terahertz field
journal, January 2016


Generating Single-Spike Hard X-Ray Pulses with Nonlinear Bunch Compression in Free-Electron Lasers
journal, October 2017


Attosecond metrology
journal, November 2001

  • Hentschel, M.; Kienberger, R.; Spielmann, Ch.
  • Nature, Vol. 414, Issue 6863, p. 509-513
  • DOI: 10.1038/35107000

Simple Method to Generate Terawatt-Attosecond X-Ray Free-Electron-Laser Pulses
journal, June 2015


Direct observation of electron propagation and dielectric screening on the atomic length scale
journal, January 2015

  • Neppl, S.; Ernstorfer, R.; Cavalieri, A. L.
  • Nature, Vol. 517, Issue 7534
  • DOI: 10.1038/nature14094

Femtosecond x-ray pulse length characterization at the Linac Coherent Light Source free-electron laser
journal, September 2011


53-attosecond X-ray pulses reach the carbon K-edge
journal, August 2017


    Works referencing / citing this record:

    Development of readout electronics for bunch arrival-time monitor system at SXFEL
    journal, April 2019


    Attoclock revisited on electron tunnelling time
    journal, April 2019


    Commissioning of a photoelectron spectrometer for soft X-ray photon diagnostics at the European XFEL
    journal, May 2019

    • Laksman, Joakim; Buck, Jens; Glaser, Leif
    • Journal of Synchrotron Radiation, Vol. 26, Issue 4
    • DOI: 10.1107/s1600577519003552

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.