DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes

Abstract

The thermal conductivity of GaN crystals grown by different techniques is analyzed using the 3ω method in the temperature range of 30 K to 295 K. GaN wafers grown by the ammonothermal method show a significant variation in thermal conductivity at room temperature with values ranging between 164 W m-1 K-1 and 196 W m-1 K-1. GaN crystals produced with the sodium flux and hydride vapor phase epitaxy methods show results of 211 W m-1 K-1 and 224 W m-1 K-1, respectively, at room temperature. Analysis using secondary ion mass spectrometry indicates varying amounts of impurities between the respective crystals and explains the behavior of thermal conductivity trends in the samples. The observed difference between thermal conductivity curves suggests that scattering of phonons at point defects dominates the thermal conductivity of GaN within the investigated temperature range. Finally, deviations of model curves from thermal conductivity measurements and disparities between modelled characteristic lengths and actual sample thicknesses indicate that phonon resonances are active in GaN.

Authors:
 [1]; ORCiD logo [1];  [2];  [2];  [3];  [3];  [1];  [1];  [1]
  1. North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering
  2. Polish Academy of Sciences, Warsaw (Poland). Inst. of High Pressure Physics
  3. Osaka Univ., Suita, Osaka (Japan). Graduate School of Engineering, Division of Electrical, Electronic, and Information Engineering
Publication Date:
Research Org.:
Adroit Materials, Cary, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1540253
Alternate Identifier(s):
OSTI ID: 1469744
Grant/Contract Number:  
SC0011883
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 124; Journal Issue: 10; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; physics

Citation Formats

Rounds, Robert, Sarkar, Biplab, Sochacki, Tomasz, Bockowski, Michal, Imanishi, Masayuki, Mori, Yusuke, Kirste, Ronny, Collazo, Ramón, and Sitar, Zlatko. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. United States: N. p., 2018. Web. doi:10.1063/1.5047531.
Rounds, Robert, Sarkar, Biplab, Sochacki, Tomasz, Bockowski, Michal, Imanishi, Masayuki, Mori, Yusuke, Kirste, Ronny, Collazo, Ramón, & Sitar, Zlatko. Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. United States. https://doi.org/10.1063/1.5047531
Rounds, Robert, Sarkar, Biplab, Sochacki, Tomasz, Bockowski, Michal, Imanishi, Masayuki, Mori, Yusuke, Kirste, Ronny, Collazo, Ramón, and Sitar, Zlatko. Wed . "Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes". United States. https://doi.org/10.1063/1.5047531. https://www.osti.gov/servlets/purl/1540253.
@article{osti_1540253,
title = {Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes},
author = {Rounds, Robert and Sarkar, Biplab and Sochacki, Tomasz and Bockowski, Michal and Imanishi, Masayuki and Mori, Yusuke and Kirste, Ronny and Collazo, Ramón and Sitar, Zlatko},
abstractNote = {The thermal conductivity of GaN crystals grown by different techniques is analyzed using the 3ω method in the temperature range of 30 K to 295 K. GaN wafers grown by the ammonothermal method show a significant variation in thermal conductivity at room temperature with values ranging between 164 W m-1 K-1 and 196 W m-1 K-1. GaN crystals produced with the sodium flux and hydride vapor phase epitaxy methods show results of 211 W m-1 K-1 and 224 W m-1 K-1, respectively, at room temperature. Analysis using secondary ion mass spectrometry indicates varying amounts of impurities between the respective crystals and explains the behavior of thermal conductivity trends in the samples. The observed difference between thermal conductivity curves suggests that scattering of phonons at point defects dominates the thermal conductivity of GaN within the investigated temperature range. Finally, deviations of model curves from thermal conductivity measurements and disparities between modelled characteristic lengths and actual sample thicknesses indicate that phonon resonances are active in GaN.},
doi = {10.1063/1.5047531},
journal = {Journal of Applied Physics},
number = 10,
volume = 124,
place = {United States},
year = {Wed Sep 12 00:00:00 EDT 2018},
month = {Wed Sep 12 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Growth of a Two-Inch GaN Single Crystal Substrate Using the Na Flux Method
journal, October 2006

  • Kawamura, Fumio; Umeda, Hidekazu; Morishita, Masanori
  • Japanese Journal of Applied Physics, Vol. 45, Issue No. 43
  • DOI: 10.1143/JJAP.45.L1136

Thermal conductivity of amorphous solids above the plateau
journal, March 1987


Accurate dependence of gallium nitride thermal conductivity on dislocation density
journal, August 2006

  • Mion, C.; Muth, J. F.; Preble, E. A.
  • Applied Physics Letters, Vol. 89, Issue 9
  • DOI: 10.1063/1.2335972

Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control
journal, November 2016

  • Reddy, P.; Hoffmann, M. P.; Kaess, F.
  • Journal of Applied Physics, Vol. 120, Issue 18
  • DOI: 10.1063/1.4967397

Growth of GaN Crystals by Na Flux Method
journal, January 2013

  • Mori, Yusuke; Imade, Mamoru; Maruyama, Mihoko
  • ECS Journal of Solid State Science and Technology, Vol. 2, Issue 8
  • DOI: 10.1149/2.015308jss

Optically pumped UV lasers grown on bulk AlN substrates
journal, February 2012

  • Wunderer, T.; Chua, C. L.; Northrup, J. E.
  • physica status solidi (c), Vol. 9, Issue 3-4
  • DOI: 10.1002/pssc.201100424

Planar Nearly Ideal Edge-Termination Technique for GaN Devices
journal, March 2011


The influence of point defects on the thermal conductivity of AlN crystals
journal, May 2018

  • Rounds, Robert; Sarkar, Biplab; Alden, Dorian
  • Journal of Applied Physics, Vol. 123, Issue 18
  • DOI: 10.1063/1.5028141

Heat transport in thin dielectric films
journal, March 1997

  • Lee, S. -M.; Cahill, David G.
  • Journal of Applied Physics, Vol. 81, Issue 6
  • DOI: 10.1063/1.363923

Thermal conductivity of single-crystalline AlN
journal, June 2018

  • Rounds, Robert; Sarkar, Biplab; Klump, Andrew
  • Applied Physics Express, Vol. 11, Issue 7
  • DOI: 10.7567/APEX.11.071001

Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
journal, January 2004

  • Dames, C.; Chen, G.
  • Journal of Applied Physics, Vol. 95, Issue 2
  • DOI: 10.1063/1.1631734

The Bloch-Gruneisen function of arbitrary order and its series representations
journal, January 2011


Thermal Conductivity in Sodium Chloride Crystals Containing Silver Colloids
journal, July 1966


HVPE-GaN grown on MOCVD-GaN/sapphire template and ammonothermal GaN seeds: Comparison of structural, optical, and electrical properties
journal, May 2014


Ammonothermal GaN substrates: Growth accomplishments and applications
journal, June 2011

  • Dwiliński, Robert; Doradziński, Roman; Garczyński, Jerzy
  • physica status solidi (a), Vol. 208, Issue 7
  • DOI: 10.1002/pssa.201001196

High Thermal Conductivity of Gallium Nitride (GaN) Crystals Grown by HVPE Process
journal, January 2007


Thermal Conductivity of MgO, Al 2 O 3 , Mg Al 2 O 4 , and Fe 3 O 4 Crystals from 3° to 300°K
journal, April 1962


Effect of Dislocations on the Thermal Conductivity of Lithium Fluoride
journal, March 1959

  • Sproull, R. L.; Moss, M.; Weinstock, H.
  • Journal of Applied Physics, Vol. 30, Issue 3
  • DOI: 10.1063/1.1735163

Thermal Conductivity and Phonon Resonance Scattering
journal, June 1962


Thermal Conductivity in Mixed Alkali Halides: KCl:Li and KBr:Li
journal, July 1967


Experimental and Theoretical Study of Phonon Scattering from Simple Point Defects in Sodium Chloride
journal, June 1967


Phonon Scattering by Point Defects
journal, August 1963


Rotational Degrees of Freedom of Molecules in Solids. II. The Nitrite Ion in Alkali Halides
journal, August 1966


Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications
journal, May 2011

  • Collazo, Ramón; Mita, Seiji; Xie, Jinqiao
  • physica status solidi (c), Vol. 8, Issue 7-8
  • DOI: 10.1002/pssc.201000964

On GaN Crystallization by Ammonothermal Method
journal, October 1996


Thermal conductivity of GaN crystals grown by high pressure method
journal, November 2003

  • Jeżowski, A.; Stachowiak, P.; Plackowski, T.
  • physica status solidi (b), Vol. 240, Issue 2, p. 447-450
  • DOI: 10.1002/pssb.200303341

Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds
journal, August 2016


Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
journal, December 2017

  • Tsao, J. Y.; Chowdhury, S.; Hollis, M. A.
  • Advanced Electronic Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aelm.201600501

Thermal conductivity measurement from 30 to 750 K: the 3ω method
journal, February 1990

  • Cahill, David G.
  • Review of Scientific Instruments, Vol. 61, Issue 2
  • DOI: 10.1063/1.1141498

The Scattering of Low-Frequency Lattice Waves by Static Imperfections
journal, December 1955


Scattering of phonons by vacancies
journal, November 1987

  • Ratsifaritana, C. A.; Klemens, P. G.
  • International Journal of Thermophysics, Vol. 8, Issue 6
  • DOI: 10.1007/BF00500791

Effect of Boundaries and Isotopes on the Thermal Conductivity of LiF
journal, April 1967


Preparation of Free-Standing GaN Substrates from Thick GaN Layers Crystallized by Hydride Vapor Phase Epitaxy on Ammonothermally Grown GaN Seeds
journal, July 2013

  • Sochacki, Tomasz; Bryan, Zachary; Amilusik, Mikolaj
  • Applied Physics Express, Vol. 6, Issue 7
  • DOI: 10.7567/APEX.6.075504

Influence of Localized Modes on Thermal Conductivity
journal, August 1963


Report on a second round robin measurement of the thermal conductivity of CVD diamond
journal, December 1998


Thermal conductivity of GaN, 25–360 K
journal, January 1977


Rotational Degrees of Freedom of Molecules in Solids. I. The Cyanide Ion in Alkali Halides
journal, August 1966


Rotational Degrees of Freedom of Molecules in Solids. III. Thermal Properties of RbCl: CN
journal, March 1968


Thermal conductivity of heavily doped bulk crystals GaN:O. Free carriers contribution
journal, August 2015


Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors
journal, November 2002


Structural and vibrational properties of GaN
journal, August 1999

  • Deguchi, T.; Ichiryu, D.; Toshikawa, K.
  • Journal of Applied Physics, Vol. 86, Issue 4
  • DOI: 10.1063/1.370980

Elastic constants of gallium nitride
journal, March 1996

  • Polian, A.; Grimsditch, M.; Grzegory, I.
  • Journal of Applied Physics, Vol. 79, Issue 6
  • DOI: 10.1063/1.361236

Some effects of oxygen impurities on AlN and GaN
journal, December 2002

  • Slack, Glen A.; Schowalter, Leo J.; Morelli, Donald
  • Journal of Crystal Growth, Vol. 246, Issue 3-4, p. 287-298
  • DOI: 10.1016/S0022-0248(02)01753-0

Thermal Conductivity of GaAs and GaAs 1− x P x Laser Semiconductors
journal, February 1965

  • Carlson, R. O.; Slack, G. A.; Silverman, S. J.
  • Journal of Applied Physics, Vol. 36, Issue 2
  • DOI: 10.1063/1.1714018

Thermal resistance due to isotopes and other point defects
journal, January 1959


Gallium nitride devices for power electronic applications
journal, June 2013


Theoretical Phonon Thermal Conductivity of Si/Ge Superlattice Nanowires
conference, December 2008

  • Dames, Chris; Chen, Gang
  • ASME 2003 Heat Transfer Summer Conference, Heat Transfer: Volume 1
  • DOI: 10.1115/ht2003-47593

Works referencing / citing this record:

Thermal transport of nanoporous gallium nitride for photonic applications
journal, April 2019

  • Zhou, Taofei; Zhang, Cheng; ElAfandy, Rami
  • Journal of Applied Physics, Vol. 125, Issue 15
  • DOI: 10.1063/1.5083151

Impact of dislocations on the thermal conductivity of gallium nitride studied by time-domain thermoreflectance
journal, November 2019

  • Park, Kihoon; Bayram, Can
  • Journal of Applied Physics, Vol. 126, Issue 18
  • DOI: 10.1063/1.5126970

Thermal transport properties of GaN with biaxial strain and electron-phonon coupling
journal, January 2020

  • Tang, Dao-Sheng; Qin, Guang-Zhao; Hu, Ming
  • Journal of Applied Physics, Vol. 127, Issue 3
  • DOI: 10.1063/1.5133105