DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deep neural networks for accurate predictions of crystal stability

Abstract

Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors-the Pauling electronegativity and ionic radii-can predict the DFT formation energies of C3A2D3O12 garnets and ABO3 perovskites with low mean absolute errors (MAEs) of 7-10 meV atom-1 and 20-34 meV atom-1, respectively, well within the limits of DFT accuracy. Further extension to mixed garnets and perovskites with little loss in accuracy can be achieved using a binary encoding scheme, addressing a critical gap in the extension of machine-learning models from fixed stoichiometry crystals to infinite universe of mixed-species crystals. Finally, we demonstrate the potential of these models to rapidly transverse vast chemical spaces to accurately identify stable compositions, accelerating the discovery of novel materials with potentially superior properties.

Authors:
; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1469730
Alternate Identifier(s):
OSTI ID: 1543748; OSTI ID: 1559147
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Nature Communications
Additional Journal Information:
Journal Name: Nature Communications Journal Volume: 9 Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United Kingdom
Language:
English
Subject:
36 MATERIALS SCIENCE; Science & Technology; Other Topics

Citation Formats

Ye, Weike, Chen, Chi, Wang, Zhenbin, Chu, Iek-Heng, and Ong, Shyue Ping. Deep neural networks for accurate predictions of crystal stability. United Kingdom: N. p., 2018. Web. doi:10.1038/s41467-018-06322-x.
Ye, Weike, Chen, Chi, Wang, Zhenbin, Chu, Iek-Heng, & Ong, Shyue Ping. Deep neural networks for accurate predictions of crystal stability. United Kingdom. https://doi.org/10.1038/s41467-018-06322-x
Ye, Weike, Chen, Chi, Wang, Zhenbin, Chu, Iek-Heng, and Ong, Shyue Ping. Tue . "Deep neural networks for accurate predictions of crystal stability". United Kingdom. https://doi.org/10.1038/s41467-018-06322-x.
@article{osti_1469730,
title = {Deep neural networks for accurate predictions of crystal stability},
author = {Ye, Weike and Chen, Chi and Wang, Zhenbin and Chu, Iek-Heng and Ong, Shyue Ping},
abstractNote = {Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors-the Pauling electronegativity and ionic radii-can predict the DFT formation energies of C3A2D3O12 garnets and ABO3 perovskites with low mean absolute errors (MAEs) of 7-10 meV atom-1 and 20-34 meV atom-1, respectively, well within the limits of DFT accuracy. Further extension to mixed garnets and perovskites with little loss in accuracy can be achieved using a binary encoding scheme, addressing a critical gap in the extension of machine-learning models from fixed stoichiometry crystals to infinite universe of mixed-species crystals. Finally, we demonstrate the potential of these models to rapidly transverse vast chemical spaces to accurately identify stable compositions, accelerating the discovery of novel materials with potentially superior properties.},
doi = {10.1038/s41467-018-06322-x},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United Kingdom},
year = {Tue Sep 18 00:00:00 EDT 2018},
month = {Tue Sep 18 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1038/s41467-018-06322-x

Citation Metrics:
Cited by: 162 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Generating derivative structures at a fixed concentration
journal, June 2012


Accelerating materials property predictions using machine learning
journal, September 2013

  • Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02810

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure
journal, October 1998

  • Kobayashi, K. -I.; Kimura, T.; Sawada, H.
  • Nature, Vol. 395, Issue 6703
  • DOI: 10.1038/27167

Projector augmented-wave method
journal, December 1994


The Principles Determining the Structure of Complex Ionic Crystals
journal, April 1929

  • Pauling, Linus
  • Journal of the American Chemical Society, Vol. 51, Issue 4
  • DOI: 10.1021/ja01379a006

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Machine learning bandgaps of double perovskites
journal, January 2016

  • Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19375

The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations
journal, July 2017


Approximation capabilities of multilayer feedforward networks
journal, January 1991


Die Gesetze der Krystallochemie
journal, May 1926


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Inhomogeneous Electron Gas
journal, November 1964


Low temperature synthesis of Li5La3Nb2O12 with cubic garnet-type structure by sol–gel process
journal, February 2013

  • Peng, Hongjian; Wu, Qing; Xiao, Lihong
  • Journal of Sol-Gel Science and Technology, Vol. 66, Issue 1
  • DOI: 10.1007/s10971-013-2984-y

Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
journal, February 2008

  • Ong, Shyue Ping; Wang, Lei; Kang, Byoungwoo
  • Chemistry of Materials, Vol. 20, Issue 5
  • DOI: 10.1021/cm702327g

The Nature of the Chemical Bond. iv. the Energy of Single Bonds and the Relative Electronegativity of Atoms
journal, September 1932

  • Pauling, Linus
  • Journal of the American Chemical Society, Vol. 54, Issue 9
  • DOI: 10.1021/ja01348a011

Origin of ferroelectricity in perovskite oxides
journal, July 1992


Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials
journal, November 2013

  • Grinberg, Ilya; West, D. Vincent; Torres, Maria
  • Nature, Vol. 503, Issue 7477, p. 509-512
  • DOI: 10.1038/nature12622

Bulk superconductivity at 91 K in single-phase oxygen-deficient perovskite Ba 2 YCu 3 O 9 δ
journal, April 1987


Machine Learning Energies of 2 Million Elpasolite ( A B C 2 D 6 ) Crystals
journal, September 2016


Oxidation energies of transition metal oxides within the GGA + U framework
journal, May 2006


Structure and Ionic-Transport Properties of Lithium-Containing Garnets Li 3 Ln 3 Te 2 O 12 (Ln = Y, Pr, Nd, Sm−Lu)
journal, September 2006

  • O'Callaghan, Michael P.; Lynham, Danny R.; Cussen, Edmund J.
  • Chemistry of Materials, Vol. 18, Issue 19
  • DOI: 10.1021/cm060992t

Universal fragment descriptors for predicting properties of inorganic crystals
journal, June 2017

  • Isayev, Olexandr; Oses, Corey; Toher, Cormac
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15679

A general-purpose machine learning framework for predicting properties of inorganic materials
journal, August 2016


Predicting the Thermodynamic Stability of Solids Combining Density Functional Theory and Machine Learning
journal, May 2017


The thermodynamic scale of inorganic crystalline metastability
journal, November 2016

  • Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600225

Predicting the thermodynamic stability of perovskite oxides using machine learning models
journal, July 2018


Combinatorial screening for new materials in unconstrained composition space with machine learning
journal, March 2014


Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability
journal, April 2012


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013