DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface

Abstract

Zinc ion batteries using metallic zinc as the negative electrode have gained considerable interest for electrochemical energy storage, whose development is crucial for the adoption of renewable energy technologies, as zinc has a very high volumetric capacity (5845 mA h cm-3), is inexpensive and compatible with aqueous electrolytes. However, the divalent charge of zinc ions, which restricts the choice of host material due to hindered solid-state diffusion, can also pose a problem for interfacial charge transfer. We report our findings on reversible intercalation of up to two Zn2+ ions in layered V3O7·H2O. This material exhibits very high capacity and power (375 mA h g-1 at a 1C rate, and 275 mA h g-1 at an 8C rate) in an aqueous electrolyte compared to a very low capacity and slow rate capabilities in a nonaqueous medium. Operando XRD studies, together with impedance analysis, reveal solid solution behavior associated with Zn2+-ion diffusion within a water monolayer in the interlayer gap in both systems, but very sluggish interfacial charge transfer in the nonaqueous electrolyte. This points to desolvation at the interface as a major factor in dictating the kinetics. Temperature dependent impedance studies show high activation energies associated with the nonaqueous charge transfermore » process, identifying the origin of poor electrochemical performance.« less

Authors:
 [1];  [1];  [2];  [3];  [2]; ORCiD logo [3]
  1. Univ. of Waterloo, ON (Canada). Dept. of Chemistry and Waterloo Inst. for Nanotechnology
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry; Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)
  3. Univ. of Waterloo, ON (Canada). Dept. of Chemistry and Waterloo Inst. for Nanotechnology; Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)
Publication Date:
Research Org.:
Univ. of Waterloo, ON (Canada); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Natural Sciences and Engineering Research Council of Canada (NSERC)
OSTI Identifier:
1469689
Grant/Contract Number:  
AC02-06CH11357; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 4; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE

Citation Formats

Kundu, Dipan, Hosseini Vajargah, Shahrzad, Wan, Liwen, Adams, Brian, Prendergast, David, and Nazar, Linda F. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. United States: N. p., 2018. Web. doi:10.1039/C8EE00378E.
Kundu, Dipan, Hosseini Vajargah, Shahrzad, Wan, Liwen, Adams, Brian, Prendergast, David, & Nazar, Linda F. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. United States. https://doi.org/10.1039/C8EE00378E
Kundu, Dipan, Hosseini Vajargah, Shahrzad, Wan, Liwen, Adams, Brian, Prendergast, David, and Nazar, Linda F. Mon . "Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface". United States. https://doi.org/10.1039/C8EE00378E. https://www.osti.gov/servlets/purl/1469689.
@article{osti_1469689,
title = {Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface},
author = {Kundu, Dipan and Hosseini Vajargah, Shahrzad and Wan, Liwen and Adams, Brian and Prendergast, David and Nazar, Linda F.},
abstractNote = {Zinc ion batteries using metallic zinc as the negative electrode have gained considerable interest for electrochemical energy storage, whose development is crucial for the adoption of renewable energy technologies, as zinc has a very high volumetric capacity (5845 mA h cm-3), is inexpensive and compatible with aqueous electrolytes. However, the divalent charge of zinc ions, which restricts the choice of host material due to hindered solid-state diffusion, can also pose a problem for interfacial charge transfer. We report our findings on reversible intercalation of up to two Zn2+ ions in layered V3O7·H2O. This material exhibits very high capacity and power (375 mA h g-1 at a 1C rate, and 275 mA h g-1 at an 8C rate) in an aqueous electrolyte compared to a very low capacity and slow rate capabilities in a nonaqueous medium. Operando XRD studies, together with impedance analysis, reveal solid solution behavior associated with Zn2+-ion diffusion within a water monolayer in the interlayer gap in both systems, but very sluggish interfacial charge transfer in the nonaqueous electrolyte. This points to desolvation at the interface as a major factor in dictating the kinetics. Temperature dependent impedance studies show high activation energies associated with the nonaqueous charge transfer process, identifying the origin of poor electrochemical performance.},
doi = {10.1039/C8EE00378E},
journal = {Energy & Environmental Science},
number = 4,
volume = 11,
place = {United States},
year = {Mon Feb 19 00:00:00 EST 2018},
month = {Mon Feb 19 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 433 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Lattice parameters of V3O7•H2O and Zn2V3O7•H2O derived from experiment, and density functional theory calculations for the lowest energy configurations.

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Interactions of Organozinc Compounds with Crown Ethers and Cryptands:  Formation of R 2 Zn(18-crown-6) Rotaxanes
journal, November 1999

  • Fabicon, Ronaldo M.; Parvez, Masood; Richey, Herman G.
  • Organometallics, Vol. 18, Issue 24
  • DOI: 10.1021/om990468e

Calculation, simulation and interpretation of electrochemical impedances
journal, May 1992


Improved Nonlinear Model for Electrode Voltage–Current Relationship for More Consistent Online Battery System Identification
journal, May 2013

  • Juang, Larry W.; Kollmeyer, Phillip J.; Jahns, Thomas M.
  • IEEE Transactions on Industry Applications, Vol. 49, Issue 3
  • DOI: 10.1109/TIA.2013.2253083

A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries
journal, December 2007


Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode
journal, February 2017


Projector augmented-wave method
journal, December 1994


Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn
journal, November 2010


Synthesis and characterization of an electrolyte system based on a biodegradable polymer
journal, January 2013


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


First-principles evaluation of multi-valent cation insertion into orthorhombic V 2 O 5
journal, January 2015

  • Gautam, Gopalakrishnan Sai; Canepa, Pieremanuele; Malik, Rahul
  • Chemical Communications, Vol. 51, Issue 71
  • DOI: 10.1039/C5CC04947D

Copper hexacyanoferrate with a well-defined open framework as a positive electrode for aqueous zinc ion batteries
journal, January 2015


Solvation Structure of Zn 2+ and Cu 2+ Ions in Acetonitrile: A Combined EXAFS and XANES Study
journal, February 2015

  • D’Angelo, Paola; Migliorati, Valentina
  • The Journal of Physical Chemistry B, Vol. 119, Issue 10
  • DOI: 10.1021/acs.jpcb.5b01634

Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges
journal, February 2017

  • Canepa, Pieremanuele; Sai Gautam, Gopalakrishnan; Hannah, Daniel C.
  • Chemical Reviews, Vol. 117, Issue 5
  • DOI: 10.1021/acs.chemrev.6b00614

Secondary batteries with multivalent ions for energy storage
journal, September 2015

  • Xu, Chengjun; Chen, Yanyi; Shi, Shan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14120

Origin of Electrochemical, Structural, and Transport Properties in Nonaqueous Zinc Electrolytes
journal, January 2016

  • Han, Sang-Don; Rajput, Nav Nidhi; Qu, Xiaohui
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 5
  • DOI: 10.1021/acsami.5b10024

Zn Electrochemistry in 1-Ethyl-3-Methylimidazolium and N -Butyl- N -Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes
journal, September 2014

  • Simons, Tristan J.; MacFarlane, Douglas R.; Forsyth, Maria
  • ChemElectroChem, Vol. 1, Issue 10
  • DOI: 10.1002/celc.201402177

Energetic Zinc Ion Chemistry: The Rechargeable Zinc Ion Battery
journal, December 2011

  • Xu, Chengjun; Li, Baohua; Du, Hongda
  • Angewandte Chemie International Edition, Vol. 51, Issue 4
  • DOI: 10.1002/anie.201106307

Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li + , Na + , and Mg 2+ )
journal, May 2013

  • Mizuno, Yoshifumi; Okubo, Masashi; Hosono, Eiji
  • The Journal of Physical Chemistry C, Vol. 117, Issue 21
  • DOI: 10.1021/jp311616s

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


A High Power Rechargeable Nonaqueous Multivalent Zn/V 2 O 5 Battery
journal, August 2016

  • Senguttuvan, Premkumar; Han, Sang-Don; Kim, Soojeong
  • Advanced Energy Materials, Vol. 6, Issue 24
  • DOI: 10.1002/aenm.201600826

An Aqueous Rechargeable Zn//Co 3 O 4 Battery with High Energy Density and Good Cycling Behavior
journal, April 2016


A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes
journal, February 2016


A Zn–NiO rechargeable battery with long lifespan and high energy density
journal, January 2015

  • Wang, Xiaowei; Li, Minxia; Wang, Yanfang
  • Journal of Materials Chemistry A, Vol. 3, Issue 16
  • DOI: 10.1039/C5TA01947H

Flexible additive free H 2 V 3 O 8 nanowire membrane as cathode for sodium ion batteries
journal, January 2016

  • Wang, Di; Wei, Qiulong; Sheng, Jinzhi
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 17
  • DOI: 10.1039/C6CP00745G

Hyper-dendritic nanoporous zinc foam anodes
journal, April 2015

  • Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya
  • NPG Asia Materials, Vol. 7, Issue 4
  • DOI: 10.1038/am.2015.32

Solvation structure and energetics of electrolytes for multivalent energy storage
journal, January 2014

  • Lapidus, Saul H.; Rajput, Nav Nidhi; Qu, Xiaohui
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 40
  • DOI: 10.1039/C4CP03015J

Investigation of the Mechanism of Mg Insertion in Birnessite in Nonaqueous and Aqueous Rechargeable Mg-Ion Batteries
journal, January 2016


Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate
journal, February 2016


Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities
journal, September 2017


Interface Reduction Synthesis of H 2 V 3 O 8 Nanobelts–Graphene for High-Rate Li-Ion Batteries
journal, May 2015

  • Zhang, Cuiping; Song, Huanqiao; Zhang, Changkun
  • The Journal of Physical Chemistry C, Vol. 119, Issue 21
  • DOI: 10.1021/acs.jpcc.5b01426

Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System
journal, September 2014

  • Zhang, Leyuan; Chen, Liang; Zhou, Xufeng
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201400930

Ab initiomolecular dynamics for liquid metals
journal, January 1993


A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
journal, August 2016


Structure determination of H2V3O8 by powder X-ray diffraction
journal, December 1990


Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond
journal, October 2014

  • Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500049y

Mg rechargeable batteries: an on-going challenge
journal, January 2013

  • Yoo, Hyun Deog; Shterenberg, Ivgeni; Gofer, Yosef
  • Energy & Environmental Science, Vol. 6, Issue 8, p. 2265-2279
  • DOI: 10.1039/c3ee40871j

Reversible aqueous zinc/manganese oxide energy storage from conversion reactions
journal, April 2016


Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries
journal, August 2015


Elucidating the intercalation mechanism of zinc ions into α-MnO 2 for rechargeable zinc batteries
journal, January 2015

  • Lee, Boeun; Lee, Hae Ri; Kim, Haesik
  • Chemical Communications, Vol. 51, Issue 45
  • DOI: 10.1039/C5CC02585K

Understanding the Electrochemical Mechanism of K-αMnO 2 for Magnesium Battery Cathodes
journal, May 2014

  • Arthur, Timothy S.; Zhang, Ruigang; Ling, Chen
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 10
  • DOI: 10.1021/am5015327

EIS investigation of zinc dissolution in aerated sulfate medium. Part I: bulk zinc
journal, October 2001


EIS investigation of zinc dissolution in aerated sulphate medium. Part II: zinc coatings
journal, August 2002


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Reducing Dzyaloshinskii-Moriya interaction and field-free spin-orbit torque switching in synthetic antiferromagnets
journal, May 2021


High-resolution X-ray luminescence extension imaging
journal, February 2021


Electronic structure of AlFeN films exhibiting crystallographic orientation change from c- to a-axis with Fe concentrations and annealing effect
journal, February 2020


Improved nonlinear model for electrode voltage-current relationship for more consistent online battery system identification
conference, September 2011

  • Juang, Larry W.; Kollmeyer, Phillip J.; Jahns, T. M.
  • 2011 IEEE Energy Conversion Congress and Exposition (ECCE)
  • DOI: 10.1109/ecce.2011.6064120

‘Corrosion and electrochemistry of zinc’;
journal, January 1997


Works referencing / citing this record:

Recent Advances in Zn-Ion Batteries
journal, August 2018

  • Song, Ming; Tan, Hua; Chao, Dongliang
  • Advanced Functional Materials, Vol. 28, Issue 41
  • DOI: 10.1002/adfm.201802564

ZnCl 2 “Water‐in‐Salt” Electrolyte Transforms the Performance of Vanadium Oxide as a Zn Battery Cathode
journal, May 2019

  • Zhang, Lu; Rodríguez‐Pérez, Ismael A.; Jiang, Heng
  • Advanced Functional Materials, Vol. 29, Issue 30
  • DOI: 10.1002/adfm.201902653

Toward High‐Performance Hybrid Zn‐Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive
journal, June 2019


Realizing a Rechargeable High‐Performance Cu–Zn Battery by Adjusting the Solubility of Cu 2+
journal, September 2019

  • Zhu, Qiancheng; Cheng, Mingyu; Zhang, Bowen
  • Advanced Functional Materials, Vol. 29, Issue 50
  • DOI: 10.1002/adfm.201905979

Conformal Conducting Polymer Shells on V 2 O 5 Nanosheet Arrays as a High-Rate and Stable Zinc-Ion Battery Cathode
journal, November 2018

  • Xu, Dongming; Wang, Huanwen; Li, Fuyun
  • Advanced Materials Interfaces, Vol. 6, Issue 2
  • DOI: 10.1002/admi.201801506

Recent Advances and Prospects of Cathode Materials for Rechargeable Aqueous Zinc‐Ion Batteries
journal, July 2019

  • Chen, Lineng; An, Qinyou; Mai, Liqiang
  • Advanced Materials Interfaces, Vol. 6, Issue 17
  • DOI: 10.1002/admi.201900387

Progress in Rechargeable Aqueous Zinc- and Aluminum-Ion Battery Electrodes: Challenges and Outlook
journal, October 2018

  • Verma, Vivek; Kumar, Sonal; Manalastas, William
  • Advanced Sustainable Systems, Vol. 3, Issue 1
  • DOI: 10.1002/adsu.201800111

Hydrated Intercalation for High‐Performance Aqueous Zinc Ion Batteries
journal, February 2019

  • Shin, Jaeho; Choi, Dong Shin; Lee, Hyeon Jeong
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201900083

Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation
journal, March 2020

  • Clark, Simon; Mainar, Aroa Ramos; Iruin, Elena
  • Advanced Energy Materials, Vol. 10, Issue 10
  • DOI: 10.1002/aenm.201903470

Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives
journal, March 2020


Design Strategies for Vanadium‐based Aqueous Zinc‐Ion Batteries
journal, August 2019


How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface
journal, August 2018

  • Wang, Fei; Sun, Wei; Shadike, Zulipiya
  • Angewandte Chemie International Edition, Vol. 57, Issue 37
  • DOI: 10.1002/anie.201806748

A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries
journal, November 2018

  • Shi, Hua-Yu; Ye, Yin-Jian; Liu, Kuan
  • Angewandte Chemie International Edition, Vol. 57, Issue 50
  • DOI: 10.1002/anie.201808886

Design Strategies for Vanadium-based Aqueous Zinc-Ion Batteries
journal, August 2019

  • Wan, Fang; Niu, Zhiqiang
  • Angewandte Chemie International Edition, Vol. 58, Issue 46
  • DOI: 10.1002/anie.201903941

Inhibiting VOPO 4x  H 2 O Decomposition and Dissolution in Rechargeable Aqueous Zinc Batteries to Promote Voltage and Capacity Stabilities
journal, November 2019

  • Shi, Hua‐Yu; Song, Yu; Qin, Zengming
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201908853

Water in Rechargeable Multivalent-Ion Batteries: An Electrochemical Pandora's Box
journal, January 2019


Highly Reversible Phase Transition Endows V 6 O 13 with Enhanced Performance as Aqueous Zinc‐Ion Battery Cathode
journal, April 2019


High Potassium Storage Capability of H 2 V 3 O 8 in a Non‐Aqueous Electrolyte
journal, October 2019

  • Rastgoo‐Deylami, Mohadese; Heo, Jongwook W.; Hong, Seung‐Tae
  • ChemistrySelect, Vol. 4, Issue 40
  • DOI: 10.1002/slct.201900618

H + ‐Insertion Boosted α‐MnO 2 for an Aqueous Zn‐Ion Battery
journal, January 2020


Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives
journal, May 2019


δ-MnO2 nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries
journal, June 2019


In situ growth of (NH 4 ) 2 V 10 O 25 ·8H 2 O urchin-like hierarchical arrays as superior electrodes for all-solid-state supercapacitors
journal, January 2018

  • Jiang, Yingchang; Jiang, Le; Wu, Zeyi
  • Journal of Materials Chemistry A, Vol. 6, Issue 34
  • DOI: 10.1039/c8ta05706k

Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries
journal, January 2019

  • Nam, Kwan Woo; Kim, Heejin; Choi, Jin Hyeok
  • Energy & Environmental Science, Vol. 12, Issue 6
  • DOI: 10.1039/c9ee00718k

Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes
journal, January 2020

  • Xie, Xuesong; Liang, Shuquan; Gao, Jiawei
  • Energy & Environmental Science, Vol. 13, Issue 2
  • DOI: 10.1039/c9ee03545a

Flexible and high-energy-density Zn/MnO 2 batteries enabled by electrochemically exfoliated graphene nanosheets
journal, January 2020

  • Shi, Fangxu; Mang, Chaocheng; Liu, Haiwei
  • New Journal of Chemistry, Vol. 44, Issue 3
  • DOI: 10.1039/c9nj05433b

Synthesis and electrochemical performance of NaV 3 O 8 nanobelts for Li/Na-ion batteries and aqueous zinc-ion batteries
journal, January 2019


K + intercalated V 2 O 5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries
journal, January 2019

  • Islam, Saiful; Alfaruqi, Muhammad Hilmy; Putro, Dimas Y.
  • Journal of Materials Chemistry A, Vol. 7, Issue 35
  • DOI: 10.1039/c9ta05767f

Rechargeable aqueous hybrid ion batteries: developments and prospects
journal, January 2019

  • Ao, Huaisheng; Zhao, Yingyue; Zhou, Jie
  • Journal of Materials Chemistry A, Vol. 7, Issue 32
  • DOI: 10.1039/c9ta06433h

A hydrated NH 4 V 3 O 8 nanobelt electrode for superior aqueous and quasi-solid-state zinc ion batteries
journal, January 2019

  • Lai, Jianwei; Tang, Hui; Zhu, Xiuping
  • Journal of Materials Chemistry A, Vol. 7, Issue 40
  • DOI: 10.1039/c9ta07822c

Rechargeable Zinc-Ion Battery Based on Choline Chloride-Urea Deep Eutectic Solvent
journal, January 2019

  • Kao-ian, Wathanyu; Pornprasertsuk, Rojana; Thamyongkit, Patchanita
  • Journal of The Electrochemical Society, Vol. 166, Issue 6
  • DOI: 10.1149/2.0641906jes

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells
journal, January 2019

  • Ko, Jesse S.; Donakowski, Martin D.; Sassin, Megan B.
  • MRS Communications, Vol. 9, Issue 01
  • DOI: 10.1557/mrc.2019.3

A Stimulus‐Responsive Zinc–Iodine Battery with Smart Overcharge Self‐Protection Function
text, January 2020

  • Wang, Faxing; Tseng, Jo-Chi; Liu, Zaichun
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2020-02507

Binder-Free Centimeter-Long V2O5 Nanofibers on Carbon Cloth as Cathode Material for Zinc-Ion Batteries
journal, December 2019

  • De Juan-Corpuz, Lyn Marie; Corpuz, Ryan Dula; Somwangthanaroj, Anongnat
  • Energies, Vol. 13, Issue 1
  • DOI: 10.3390/en13010031

Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries
journal, December 2019


A Stimulus‐Responsive Zinc–Iodine Battery with Smart Overcharge Self‐Protection Function
journal, March 2020


How Water Accelerates Bivalent Ion Diffusion at the Electrolyte/Electrode Interface
journal, August 2018


A Long-Cycle-Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc Batteries
journal, November 2018


Designing Aqueous Organic Electrolytes for Zinc–Air Batteries: Method, Simulation, and Validation
text, January 2020


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.