skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stochastic averaging and sensitivity analysis for two scale reaction networks

Abstract

In the presence of multiscale dynamics in a reaction network, direct simulation methods become inefficient as they can only advance the system on the smallest scale. This work presents stochastic averaging techniques to accelerate computations for obtaining estimates of expected values and sensitivities with respect to the steady state distribution. A two-time-scale formulation is used to establish bounds on the bias induced by the averaging method. Further, this formulation provides a framework to create an accelerated “averaged” version of most single-scale sensitivity estimation methods. In particular, we propose the use of a centered ergodic likelihood ratio method for steady state estimation and show how one can adapt it to accelerated simulations of multiscale systems. Lastly, we develop an adaptive “batch-means” stopping rule for determining when to terminate the micro-equilibration process.

Authors:
 [1];  [1];  [1];  [1]
  1. Univ. of Delaware, Newark, DE (United States)
Publication Date:
Research Org.:
Univ. of Delaware, Newark, DE (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
OSTI Identifier:
1469682
Alternate Identifier(s):
OSTI ID: 1238296
Grant/Contract Number:  
SC0010549
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 7; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Hashemi, Araz, Núñez, Marcel, Plecháč, Petr, and Vlachos, Dionisios G. Stochastic averaging and sensitivity analysis for two scale reaction networks. United States: N. p., 2016. Web. doi:10.1063/1.4942008.
Hashemi, Araz, Núñez, Marcel, Plecháč, Petr, & Vlachos, Dionisios G. Stochastic averaging and sensitivity analysis for two scale reaction networks. United States. doi:10.1063/1.4942008.
Hashemi, Araz, Núñez, Marcel, Plecháč, Petr, and Vlachos, Dionisios G. Wed . "Stochastic averaging and sensitivity analysis for two scale reaction networks". United States. doi:10.1063/1.4942008. https://www.osti.gov/servlets/purl/1469682.
@article{osti_1469682,
title = {Stochastic averaging and sensitivity analysis for two scale reaction networks},
author = {Hashemi, Araz and Núñez, Marcel and Plecháč, Petr and Vlachos, Dionisios G.},
abstractNote = {In the presence of multiscale dynamics in a reaction network, direct simulation methods become inefficient as they can only advance the system on the smallest scale. This work presents stochastic averaging techniques to accelerate computations for obtaining estimates of expected values and sensitivities with respect to the steady state distribution. A two-time-scale formulation is used to establish bounds on the bias induced by the averaging method. Further, this formulation provides a framework to create an accelerated “averaged” version of most single-scale sensitivity estimation methods. In particular, we propose the use of a centered ergodic likelihood ratio method for steady state estimation and show how one can adapt it to accelerated simulations of multiscale systems. Lastly, we develop an adaptive “batch-means” stopping rule for determining when to terminate the micro-equilibration process.},
doi = {10.1063/1.4942008},
journal = {Journal of Chemical Physics},
number = 7,
volume = 144,
place = {United States},
year = {2016},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Sensitivity of the stationary distribution vector for an ergodic Markov chain
journal, April 1986


Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems
journal, July 2005

  • Cao, Yang; Gillespie, Dan; Petzold, Linda
  • Journal of Computational Physics, Vol. 206, Issue 2
  • DOI: 10.1016/j.jcp.2004.12.014

Binomial distribution based τ-leap accelerated stochastic simulation
journal, January 2005

  • Chatterjee, Abhijit; Vlachos, Dionisios G.; Katsoulakis, Markos A.
  • The Journal of Chemical Physics, Vol. 122, Issue 2
  • DOI: 10.1063/1.1833357

Simulation Output Analysis Using Standardized Time Series
journal, February 1990

  • Glynn, Peter W.; Iglehart, Donald L.
  • Mathematics of Operations Research, Vol. 15, Issue 1
  • DOI: 10.1287/moor.15.1.1

Practical Markov Chain Monte Carlo
journal, November 1992


The finite state projection algorithm for the solution of the chemical master equation
journal, January 2006

  • Munsky, Brian; Khammash, Mustafa
  • The Journal of Chemical Physics, Vol. 124, Issue 4
  • DOI: 10.1063/1.2145882

Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks
journal, January 2010

  • Rathinam, Muruhan; Sheppard, Patrick W.; Khammash, Mustafa
  • The Journal of Chemical Physics, Vol. 132, Issue 3
  • DOI: 10.1063/1.3280166

Avoiding negative populations in explicit Poisson tau-leaping
journal, August 2005

  • Cao, Yang; Gillespie, Daniel T.; Petzold, Linda R.
  • The Journal of Chemical Physics, Vol. 123, Issue 5
  • DOI: 10.1063/1.1992473

Efficient Exact Stochastic Simulation of Chemical Systems with Many Species and Many Channels
journal, March 2000

  • Gibson, Michael A.; Bruck, Jehoshua
  • The Journal of Physical Chemistry A, Vol. 104, Issue 9
  • DOI: 10.1021/jp993732q

An optimal Finite State Projection Method
journal, May 2010


Approximate accelerated stochastic simulation of chemically reacting systems
journal, July 2001

  • Gillespie, Daniel T.
  • The Journal of Chemical Physics, Vol. 115, Issue 4
  • DOI: 10.1063/1.1378322

Overcoming stiffness in stochastic simulation stemming from partial equilibrium: A multiscale Monte Carlo algorithm
journal, October 2005

  • Samant, A.; Vlachos, D. G.
  • The Journal of Chemical Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.2046628

A pathwise derivative approach to the computation of parameter sensitivities in discrete stochastic chemical systems
journal, January 2012

  • Sheppard, Patrick W.; Rathinam, Muruhan; Khammash, Mustafa
  • The Journal of Chemical Physics, Vol. 136, Issue 3
  • DOI: 10.1063/1.3677230

Steady-state parameter sensitivity in stochastic modeling via trajectory reweighting
journal, March 2012

  • Warren, Patrick B.; Allen, Rosalind J.
  • The Journal of Chemical Physics, Vol. 136, Issue 10
  • DOI: 10.1063/1.3690092

Efficient step size selection for the tau-leaping simulation method
journal, January 2006

  • Cao, Yang; Gillespie, Daniel T.; Petzold, Linda R.
  • The Journal of Chemical Physics, Vol. 124, Issue 4
  • DOI: 10.1063/1.2159468

Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems
journal, January 2015

  • Wolf, Elizabeth Skubak; Anderson, David F.
  • The Journal of Chemical Physics, Vol. 142, Issue 3
  • DOI: 10.1063/1.4905332

Efficient stochastic sensitivity analysis of discrete event systems
journal, February 2007


Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method
journal, December 2003

  • Rathinam, Muruhan; Petzold, Linda R.; Cao, Yang
  • The Journal of Chemical Physics, Vol. 119, Issue 24
  • DOI: 10.1063/1.1627296

Steady state likelihood ratio sensitivity analysis for stiff kinetic Monte Carlo simulations
journal, January 2015

  • Núñez, M.; Vlachos, D. G.
  • The Journal of Chemical Physics, Vol. 142, Issue 4
  • DOI: 10.1063/1.4905957

Sensitivity analysis for stochastic chemical reaction networks with multiple time-scales
journal, January 2014

  • Gupta, Ankit; Khammash, Mustafa
  • Electronic Journal of Probability, Vol. 19, Issue 0
  • DOI: 10.1214/EJP.v19-3246

Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions
journal, March 1986

  • Kipnis, C.; Varadhan, S. R. S.
  • Communications in Mathematical Physics, Vol. 104, Issue 1
  • DOI: 10.1007/BF01210789

An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains
journal, January 2012

  • Anderson, David F.
  • SIAM Journal on Numerical Analysis, Vol. 50, Issue 5
  • DOI: 10.1137/110849079

Binomial leap methods for simulating stochastic chemical kinetics
journal, December 2004

  • Tian, Tianhai; Burrage, Kevin
  • The Journal of Chemical Physics, Vol. 121, Issue 21
  • DOI: 10.1063/1.1810475

Likelihood ratio gradient estimation for stochastic systems
journal, October 1990


A modified next reaction method for simulating chemical systems with time dependent propensities and delays
journal, December 2007

  • Anderson, David F.
  • The Journal of Chemical Physics, Vol. 127, Issue 21
  • DOI: 10.1063/1.2799998

Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions
journal, February 2005

  • Salis, Howard; Kaznessis, Yiannis
  • The Journal of Chemical Physics, Vol. 122, Issue 5
  • DOI: 10.1063/1.1835951

Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory
journal, January 2013

  • Pantazis, Yannis; Katsoulakis, Markos A.; Vlachos, Dionisios G.
  • BMC Bioinformatics, Vol. 14, Issue 1
  • DOI: 10.1186/1471-2105-14-311

An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
journal, February 2007

  • Chatterjee, Abhijit; Vlachos, Dionisios G.
  • Journal of Computer-Aided Materials Design, Vol. 14, Issue 2
  • DOI: 10.1007/s10820-006-9042-9

Nested stochastic simulation algorithms for chemical kinetic systems with multiple time scales
journal, January 2007

  • E., Weinan; Liu, Di; Vanden-Eijnden, Eric
  • Journal of Computational Physics, Vol. 221, Issue 1
  • DOI: 10.1016/j.jcp.2006.06.019

Efficient gradient estimation using finite differencing and likelihood ratios for kinetic Monte Carlo simulations
journal, August 2012

  • McGill, Jacob A.; Ogunnaike, Babatunde A.; Vlachos, Dionisios G.
  • Journal of Computational Physics, Vol. 231, Issue 21
  • DOI: 10.1016/j.jcp.2012.06.037

Strong Convergence and Speed up of Nested Stochastic Simulation Algorithm
journal, April 2014


The slow-scale stochastic simulation algorithm
journal, January 2005

  • Cao, Yang; Gillespie, Daniel T.; Petzold, Linda R.
  • The Journal of Chemical Physics, Vol. 122, Issue 1
  • DOI: 10.1063/1.1824902

An efficient and unbiased method for sensitivity analysis of stochastic reaction networks
journal, December 2014

  • Gupta, Ankit; Khammash, Mustafa
  • Journal of The Royal Society Interface, Vol. 11, Issue 101
  • DOI: 10.1098/rsif.2014.0979