skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock

Abstract

The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. We present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock ismore » radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3];  [3];  [2]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [4];  [1];  [3]; ORCiD logo [4]; ORCiD logo [1];  [2];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [3] more »;  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Negev Nuclear Research Center (NNRC), Beer Sheva (Israel)
  3. Univ. of Michigan, Ann Arbor, MI (United States). Climate and Space Sciences and Engineering Dept.
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP) (NA-10); USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
1469460
Alternate Identifier(s):
OSTI ID: 1437524; OSTI ID: 1482938
Report Number(s):
LLNL-JRNL-738260; LA-UR-18-21991
Journal ID: ISSN 1070-664X; 891432
Grant/Contract Number:  
AC52-07NA27344; NA0002956; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 79 ASTRONOMY AND ASTROPHYSICS; high pressure instruments; supernovae; tectonophysics; hydrodynamics; stellar structure and properties; radiative flux; shock waves; flow instabilities; buoyancy; thermodynamic states and processes

Citation Formats

Huntington, C. M., Shimony, A., Trantham, M., Kuranz, C. C., Shvarts, D., Di Stefano, C. A., Doss, F. W., Drake, R. P., Flippo, K. A., Kalantar, D. H., Klein, S. R., Kline, J. L., MacLaren, S. A., Malamud, G., Miles, A. R., Prisbrey, S. T., Raman, K. S., Remington, B. A., Robey, H. F., Wan, W. C., and Park, H. -S. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. United States: N. p., 2018. Web. doi:10.1063/1.5022179.
Huntington, C. M., Shimony, A., Trantham, M., Kuranz, C. C., Shvarts, D., Di Stefano, C. A., Doss, F. W., Drake, R. P., Flippo, K. A., Kalantar, D. H., Klein, S. R., Kline, J. L., MacLaren, S. A., Malamud, G., Miles, A. R., Prisbrey, S. T., Raman, K. S., Remington, B. A., Robey, H. F., Wan, W. C., & Park, H. -S. Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock. United States. doi:10.1063/1.5022179.
Huntington, C. M., Shimony, A., Trantham, M., Kuranz, C. C., Shvarts, D., Di Stefano, C. A., Doss, F. W., Drake, R. P., Flippo, K. A., Kalantar, D. H., Klein, S. R., Kline, J. L., MacLaren, S. A., Malamud, G., Miles, A. R., Prisbrey, S. T., Raman, K. S., Remington, B. A., Robey, H. F., Wan, W. C., and Park, H. -S. Thu . "Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock". United States. doi:10.1063/1.5022179. https://www.osti.gov/servlets/purl/1469460.
@article{osti_1469460,
title = {Ablative stabilization of Rayleigh-Taylor instabilities resulting from a laser-driven radiative shock},
author = {Huntington, C. M. and Shimony, A. and Trantham, M. and Kuranz, C. C. and Shvarts, D. and Di Stefano, C. A. and Doss, F. W. and Drake, R. P. and Flippo, K. A. and Kalantar, D. H. and Klein, S. R. and Kline, J. L. and MacLaren, S. A. and Malamud, G. and Miles, A. R. and Prisbrey, S. T. and Raman, K. S. and Remington, B. A. and Robey, H. F. and Wan, W. C. and Park, H. -S.},
abstractNote = {The Rayleigh-Taylor (RT) instability is a common occurrence in nature, notably in astrophysical systems like supernovae, where it serves to mix the dense layers of the interior of an exploding star with the low-density stellar wind surrounding it, and in inertial confinement fusion experiments, where it mixes cooler materials with the central hot spot in an imploding capsule and stifles the desired nuclear reactions. In both of these examples, the radiative flux generated by strong shocks in the system may play a role in partially stabilizing RT instabilities. We present experiments performed on the National Ignition Facility, designed to isolate and study the role of radiation and heat conduction from a shock front in the stabilization of hydrodynamic instabilities. By varying the laser power delivered to a shock-tube target with an embedded, unstable interface, the radiative fluxes generated at the shock front could be controlled. We observe decreased RT growth when the shock significantly heats the medium around it, in contrast to a system where the shock did not produce significant heating. Both systems are modeled with a modified set of buoyancy-drag equations accounting for ablative stabilization, and the experimental results are consistent with ablative stabilization when the shock is radiative. This result has important implications for our understanding of astrophysical radiative shocks and supernova radiative hydrodynamics [Kuranz et al., Nature Communications 9(1), 1564 (2018)].},
doi = {10.1063/1.5022179},
journal = {Physics of Plasmas},
number = 5,
volume = 25,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: The base of the target is a hohlraum (a cylindrical gold cavity), which is open to the lower half of the NIF chamber. A cylindrical shock tube contains the physics package (the interface between heavy and light materials), and is coupled to the hohlraum on the end opposingmore » where the laser light enters. A subset of laser beams drive an iron foil which is stood o from the physics package, along the x-ray imaging axis, to produce the diagnostic x-ray source. Additionally, a large plastic and gold structure is mounted between the hohlraum and the diagnostic to shield the detector from the hard x-rays produced in the hohlraum, which have su cient energy to escape the hohlraum and generate background on the detector.« less

Save / Share:

Works referenced in this record:

Radiative Shocks in Astrophysics and the Laboratory
journal, July 2005


HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Mechanism of growth reduction of the deceleration-phase ablative Rayleigh-Taylor instability
journal, May 2003


Rayleigh–Taylor growth at decelerating interfaces
journal, January 2002

  • Drake, R. P.; Keiter, P. A.
  • Physics of Plasmas, Vol. 9, Issue 1
  • DOI: 10.1063/1.1418434

Self‐consistent stability analysis of ablation fronts with large Froude numbers
journal, April 1996

  • Goncharov, V. N.; Betti, R.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 4
  • DOI: 10.1063/1.871730

Astrophysically relevant radiation hydrodynamics experiment at the National Ignition Facility
journal, April 2011

  • Kuranz, C. C.; Park, H. -S.; Remington, B. A.
  • Astrophysics and Space Science, Vol. 336, Issue 1
  • DOI: 10.1007/s10509-011-0679-9

Self‐consistent stability analysis of ablation fronts with small Froude numbers
journal, December 1996

  • Goncharov, V. N.; Betti, R.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 12
  • DOI: 10.1063/1.872078

The interaction of the radiation from a Type II supernova with a circumstellar shell
journal, December 1981

  • Chevalier, R. A.
  • The Astrophysical Journal, Vol. 251
  • DOI: 10.1086/159460

Numerical Investigation of the Stability of a Shock-Accelerated Interface between Two Fluids
journal, January 1972


The Blast-Wave-Driven Instability as a Vehicle for Understanding Supernova Explosion Structure
journal, April 2009


How high energy fluxes may affect Rayleigh–Taylor instability growth in young supernova remnants
journal, April 2018


X-ray emission from radiative shocks in type II supernovae
journal, March 2006


Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Numerical simulations of the ablative Rayleigh-Taylor instability in planar inertial-confinement-fusion targets using the FastRad3D code
journal, December 2016

  • Bates, J. W.; Schmitt, A. J.; Karasik, M.
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4967944

Development of a short duration backlit pinhole for radiography on the National Ignition Facility
journal, October 2010

  • Huntington, C. M.; Krauland, C. M.; Kuranz, C. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3496984

Three-dimensional blast-wave-driven Rayleigh–Taylor instability and the effects of long-wavelength modes
journal, May 2009

  • Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3099320

Ablative Stabilization of the Deceleration Phase Rayleigh-Taylor Instability
journal, November 2000


Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation
journal, June 2000


Systematic study of Rayleigh–Taylor growth in directly driven plastic targets in a laser-intensity range from ∼2×1014to∼1.5×1015W∕cm2
journal, August 2008

  • Smalyuk, V. A.; Hu, S. X.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 15, Issue 8
  • DOI: 10.1063/1.2967899

Effect of initial conditions on two-dimensional Rayleigh–Taylor instability and transition to turbulence in planar blast-wave-driven systems
journal, November 2004

  • Miles, A. R.; Edwards, M. J.; Greenough, J. A.
  • Physics of Plasmas, Vol. 11, Issue 11
  • DOI: 10.1063/1.1804181

Spike Penetration in Blast-Wave-Driven Instabilities
journal, December 2011


Rayleigh–Taylor instability evolution in ablatively driven cylindrical implosions
journal, May 1997

  • Hsing, W. W.; Barnes, Cris W.; Beck, J. B.
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872326

Laboratory experiments to simulate the hydrodynamics of supernova remnants and supernovae
journal, July 1999

  • Drake, R. P.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A7
  • DOI: 10.1029/98JA02829

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
journal, May 2013

  • Pak, A.; Divol, L.; Gregori, G.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4805081

Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability
journal, July 2015

  • Bose, A.; Woo, K. M.; Nora, R.
  • Physics of Plasmas, Vol. 22, Issue 7
  • DOI: 10.1063/1.4923438

On the influence of opacity variation on spatial structure of radiative shocks
journal, December 2011


Nonlinear Rayleigh-Taylor growth in converging geometry
journal, May 2005


Development of a Laboratory Environment to Test Modelsof Supernova Remnant Formation
journal, June 1998

  • Drake, R. P.; Carroll III, J. J.; Estabrook, Kent
  • The Astrophysical Journal, Vol. 500, Issue 2
  • DOI: 10.1086/311400

Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics
journal, June 1999

  • Ryutov, D.; Drake, R. P.; Kane, J.
  • The Astrophysical Journal, Vol. 518, Issue 2
  • DOI: 10.1086/307293

An experimental testbed for the study of hydrodynamic issues in supernovae
journal, May 2001

  • Robey, H. F.; Kane, J. O.; Remington, B. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1352594

Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws
journal, June 2001

  • Oron, D.; Arazi, L.; Kartoon, D.
  • Physics of Plasmas, Vol. 8, Issue 6
  • DOI: 10.1063/1.1362529

From lasers to the universe: Scaling laws in laboratory astrophysics
journal, December 2010


Evidence for a Bubble-Competition Regime in Indirectly Driven Ablative Rayleigh-Taylor Instability Experiments on the NIF
journal, May 2015


Supernova-relevant Hydrodynamic Instability Experiments on the Nova Laser
journal, April 1997

  • Kane, J.; Arnett, D.; Remington, B. A.
  • The Astrophysical Journal, Vol. 478, Issue 2
  • DOI: 10.1086/310556

Rayleigh–Taylor instability simulations with CRASH
journal, March 2012


Development of a Big Area BackLighter for high energy density experiments
journal, September 2014

  • Flippo, K. A.; Kline, J. L.; Doss, F. W.
  • Review of Scientific Instruments, Vol. 85, Issue 9
  • DOI: 10.1063/1.4893349

Dante soft x-ray power diagnostic for National Ignition Facility
journal, October 2004

  • Dewald, E. L.; Campbell, K. M.; Turner, R. E.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1788872

Comprehensive Diagnosis of Growth Rates of the Ablative Rayleigh-Taylor Instability
journal, January 2007


Observation of Laser Driven Supercritical Radiative Shock Precursors
journal, June 2004


Bubble merger model for the nonlinear Rayleigh–Taylor instability driven by a strong blast wave
journal, November 2004


Shock breakout in SN 1987A
journal, July 1992

  • Ensman, Lisa; Burrows, Adam
  • The Astrophysical Journal, Vol. 393
  • DOI: 10.1086/171542

Design of experiments to observe radiation stabilized Rayleigh-Taylor instability growth at an embedded decelerating interface
journal, November 2011

  • Huntington, C. M.; Kuranz, C. C.; Drake, R. P.
  • Physics of Plasmas, Vol. 18, Issue 11
  • DOI: 10.1063/1.3657428

Supernova hydrodynamics experiments on the Nova laser
journal, May 1997

  • Remington, B. A.; Kane, J.; Drake, R. P.
  • Physics of Plasmas, Vol. 4, Issue 5
  • DOI: 10.1063/1.872341

Crash: a Block-Adaptive-Mesh code for Radiative Shock Hydrodynamics—Implementation and Verification
journal, May 2011

  • van der Holst, B.; Tóth, G.; Sokolov, I. V.
  • The Astrophysical Journal Supplement Series, Vol. 194, Issue 2
  • DOI: 10.1088/0067-0049/194/2/23

Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces
journal, November 2005


Numerical simulation of supernova-relevant laser-driven hydro experiments on OMEGA
journal, July 2004

  • Miles, A. R.; Braun, D. G.; Edwards, M. J.
  • Physics of Plasmas, Vol. 11, Issue 7
  • DOI: 10.1063/1.1753274

Hydrodynamic instability growth and mix experiments at the National Ignition Facility
journal, May 2014

  • Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872026

Two-Dimensional Blast-Wave-Driven Rayleigh-Taylor Instability: Experiment and Simulation
journal, April 2009


Ablative Rayleigh-Taylor Instability at Short Wavelengths Observed with Moiré Interferometry
journal, March 2002


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.