skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of electron temperature anisotropy on proton mirror instability evolution

Abstract

Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. In this paper we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Finally, our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron-free energy so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.

Authors:
 [1];  [2];  [2]
  1. Univ. of New Hampshire, Durham, NH (United States). Dept. of Physics
  2. Univ. of New Hampshire, Durham, NH (United States). Dept. of Physics. Space Science Center
Publication Date:
Research Org.:
Univ. of New Hampshire, Durham, NH (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); National Science Foundation (NSF)
OSTI Identifier:
1469339
Alternate Identifier(s):
OSTI ID: 1402319
Grant/Contract Number:  
SC0006670; AGS-1056898; PHY-1229408
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Volume: 121; Journal Issue: 6; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; temperature anisotropy instabilities; wave-particle interactions

Citation Formats

Ahmadi, Narges, Germaschewski, Kai, and Raeder, Joachim. Effects of electron temperature anisotropy on proton mirror instability evolution. United States: N. p., 2016. Web. doi:10.1002/2016JA022429.
Ahmadi, Narges, Germaschewski, Kai, & Raeder, Joachim. Effects of electron temperature anisotropy on proton mirror instability evolution. United States. doi:10.1002/2016JA022429.
Ahmadi, Narges, Germaschewski, Kai, and Raeder, Joachim. Mon . "Effects of electron temperature anisotropy on proton mirror instability evolution". United States. doi:10.1002/2016JA022429. https://www.osti.gov/servlets/purl/1469339.
@article{osti_1469339,
title = {Effects of electron temperature anisotropy on proton mirror instability evolution},
author = {Ahmadi, Narges and Germaschewski, Kai and Raeder, Joachim},
abstractNote = {Proton mirror modes are large amplitude nonpropagating structures frequently observed in the magnetosheath. It has been suggested that electron temperature anisotropy can enhance the proton mirror instability growth rate while leaving the proton cyclotron instability largely unaffected, therefore causing the proton mirror instability to dominate the proton cyclotron instability in Earth's magnetosheath. In this paper we use particle-in-cell simulations to investigate the electron temperature anisotropy effects on proton mirror instability evolution. Contrary to the hypothesis, electron temperature anisotropy leads to excitement of the electron whistler instability. Finally, our results show that the electron whistler instability grows much faster than the proton mirror instability and quickly consumes the electron-free energy so that there is no electron temperature anisotropy left to significantly impact the evolution of the proton mirror instability.},
doi = {10.1002/2016JA022429},
journal = {Journal of Geophysical Research. Space Physics},
number = 6,
volume = 121,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Mirror mode structures in the Jovian magnetosheath
journal, January 2006

  • Joy, S. P.; Kivelson, M. G.; Walker, R. J.
  • Journal of Geophysical Research, Vol. 111, Issue A12
  • DOI: 10.1029/2006JA011985

Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel
journal, January 2006

  • Gary, S. Peter; Karimabadi, Homa
  • Journal of Geophysical Research, Vol. 111, Issue A11
  • DOI: 10.1029/2006JA011764

Cyclotron Wave Instabilities in a Plasma
journal, January 1967


Observations of the development of electron temperature anisotropies in Earth's magnetosheath: ELECTRON DISTRIBUTIONS IN THE SHEATH
journal, January 2008

  • Masood, W.; Schwartz, S. J.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A1
  • DOI: 10.1029/2007JA012715

Statistical properties of mirror mode structures observed by Ulysses in the magnetosheath of Jupiter
journal, January 1996

  • Erdős, G.; Balogh, A.
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A1
  • DOI: 10.1029/95JA02207

Lion roars and nonoscillatory drift mirror waves in the magnetosheath
journal, January 1982

  • Tsurutani, B. T.; Smith, E. J.; Anderson, R. R.
  • Journal of Geophysical Research, Vol. 87, Issue A8
  • DOI: 10.1029/JA087iA08p06060

Large-amplitude hydromagnetic waves in the inner magnetosheath
journal, September 1970

  • Kaufmann, Richard L.; Horng, Jiann-Tsorng; Wolfe, Allan
  • Journal of Geophysical Research, Vol. 75, Issue 25
  • DOI: 10.1029/JA075i025p04666

Depletion of solar wind plasma near a planetary boundary
journal, April 1976


Gyrokinetic particle simulation of nonlinear evolution of mirror instability: NONLINEAR EVOLUTION OF THE MIRROR MODE
journal, November 2013

  • Porazik, Peter; Johnson, Jay R.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 11
  • DOI: 10.1002/2013JA019308

Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures
journal, January 1994

  • Winterhalter, Daniel; Neugebauer, Marcia; Goldstein, Bruce E.
  • Journal of Geophysical Research, Vol. 99, Issue A12
  • DOI: 10.1029/94JA01977

Whistler instability: Electron anisotropy upper bound
journal, May 1996

  • Gary, S. Peter; Wang, Joseph
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A5
  • DOI: 10.1029/96JA00323

Linear dispersion relation for the mirror instability in context of the gyrokinetic theory
journal, October 2013

  • Porazik, Peter; Johnson, Jay R.
  • Physics of Plasmas, Vol. 20, Issue 10
  • DOI: 10.1063/1.4822339

Electron anisotropy constraint in the magnetosheath: Cluster observations
journal, January 2005


Linear theory of the mirror instability in non-Maxwellian space plasmas
journal, January 2002

  • Pokhotelov, Oleg A.
  • Journal of Geophysical Research, Vol. 107, Issue A10
  • DOI: 10.1029/2001JA009125

Ion anisotropy instabilities in the magnetosheath
journal, February 1993

  • Gary, S. Peter; Fuselier, Stephen A.; Anderson, Brian J.
  • Journal of Geophysical Research: Space Physics, Vol. 98, Issue A2
  • DOI: 10.1029/92JA01844

Mirror instability: 1. Physical mechanism of linear instability
journal, January 1993

  • Southwood, David J.; Kivelson, Margaret G.
  • Journal of Geophysical Research, Vol. 98, Issue A6
  • DOI: 10.1029/92JA02837

Limit on stably trapped particle fluxes
journal, January 1966


Mirror instability and L-mode electromagnetic ion cyclotron instability: Competition in the Earth's magnetosheath: MIRROR AND L-MODE EMIC INSTABILITIES
journal, October 2009

  • Shoji, Masafumi; Omura, Yoshiharu; Tsurutani, Bruce T.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A10
  • DOI: 10.1029/2008JA014038

Ion temperature anisotropy instabilities in planetary magnetosheaths: ION INSTABILITIES IN THE MAGNETOSHEATH
journal, February 2013

  • Remya, B.; Reddy, R. V.; Tsurutani, B. T.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 2
  • DOI: 10.1002/jgra.50091

Solar-Wind Proton Anisotropy Versus Beta Relation
journal, February 2013


Electron temperature effects in the linear proton mirror instability
journal, March 1995

  • Pantellini, F. G. E.; Schwartz, S. J.
  • Journal of Geophysical Research: Space Physics, Vol. 100, Issue A3
  • DOI: 10.1029/94JA02572

Ion Acceleration at the Earth’s Bow Shock
journal, June 2012


Drift mirror instability in space plasmas, 2, Nonzero electron temperature effects
journal, July 2001

  • Pokhotelov, Oleg A.; Onishchenko, Oleg G.; Balikhin, M. A.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A7
  • DOI: 10.1029/2000JA000310

The ion cyclotron anisotropy instability and the inverse correlation between proton anisotropy and proton beta
journal, January 1994

  • Gary, S. Peter; Lee, Martin A.
  • Journal of Geophysical Research, Vol. 99, Issue A6
  • DOI: 10.1029/94JA00253

Mirror instability in the magnetosphere of comet Halley
journal, June 1987

  • Russell, C. T.; Riedler, W.; Schwingenschuh, K.
  • Geophysical Research Letters, Vol. 14, Issue 6
  • DOI: 10.1029/GL014i006p00644

Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters: MIRROR MODE PROPERTIES
journal, April 2008

  • Soucek, Jan; Lucek, Elizabeth; Dandouras, Iannis
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A4
  • DOI: 10.1029/2007JA012649

Calculation by a moment technique of the perturbation of the geomagnetic field by the solar wind
journal, September 1963


Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity: MAGNETOSHEATH COMPRESSION
journal, April 2005

  • Hellinger, Petr; Trávníček, Pavel
  • Journal of Geophysical Research: Space Physics, Vol. 110, Issue A4
  • DOI: 10.1029/2004JA010687

Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause
journal, June 1998

  • Cattaneo, M. B. Bavassano; Basile, C.; Moreno, G.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A6
  • DOI: 10.1029/97JA03683

The mirror and ion cyclotron anisotropy instabilities
journal, January 1992

  • Gary, S. Peter
  • Journal of Geophysical Research, Vol. 97, Issue A6
  • DOI: 10.1029/92JA00299

Numerical simulation of nonoscillatory mirror waves at the Earth's magnetosheath
journal, January 1986

  • Price, Channon P.; Swift, Daniel W.; Lee, Lou-Chuang
  • Journal of Geophysical Research, Vol. 91, Issue A1
  • DOI: 10.1029/JA091iA01p00101

Trains of magnetic holes and magnetic humps in the heliosheath
journal, January 2006

  • Burlaga, L. F.; Ness, N. F.; Acũna, M. H.
  • Geophysical Research Letters, Vol. 33, Issue 21
  • DOI: 10.1029/2006GL027276

Mirror instability with finite electron temperature effects
journal, February 2000

  • Pokhotelov, Oleg A.; Balikhin, M. A.; Alleyne, H. St-C. K.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A2
  • DOI: 10.1029/1999JA900351

Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features: REVIEW
journal, February 2011

  • Tsurutani, Bruce T.; Lakhina, Gurbax S.; Verkhoglyadova, Olga P.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A2
  • DOI: 10.1029/2010JA015913

Mirror mode peaks: THEMIS observations versus theories: MIRROR MODES PEAKS
journal, March 2010

  • Balikhin, M. A.; Pokhotelov, O. A.; Walker, S. N.
  • Geophysical Research Letters, Vol. 37, Issue 5
  • DOI: 10.1029/2009GL042090

Drift Mirror Instability in the Magnetosphere
journal, January 1969