DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes

Abstract

Harvesting nonequilibrium hot carriers from plasmonic- metal nanostructures offers unique opportunities for driving photo- chemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. In this work, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p- GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H2 evolution in aqueous electrolytes.more » Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP) and Thomas J. Watson Lab. of Applied Physics
Publication Date:
Research Org.:
California Institute of Technology (CalTech), Pasadena, CA (United States). Joint Center for Artificial Photosynthesis (JCAP)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Swiss National Science Foundation (SNSF)
OSTI Identifier:
1469320
Grant/Contract Number:  
SC0004993; P2EZP2_159101; P300P2_171417
Resource Type:
Accepted Manuscript
Journal Name:
Nano Letters
Additional Journal Information:
Journal Volume: 18; Journal Issue: 4; Related Information: 10.1021/acs.nanolett.8b00241; Journal ID: ISSN 1530-6984
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; CO2 reduction; hot carriers; hot holes; Photoelectrochemistry; plasmonic photocathode; Schottky barrier

Citation Formats

DuChene, Joseph S., Tagliabue, Giulia, Welch, Alex J., Cheng, Wen-Hui, and Atwater, Harry A. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. United States: N. p., 2018. Web. doi:10.1021/acs.nanolett.8b00241.
DuChene, Joseph S., Tagliabue, Giulia, Welch, Alex J., Cheng, Wen-Hui, & Atwater, Harry A. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. United States. https://doi.org/10.1021/acs.nanolett.8b00241
DuChene, Joseph S., Tagliabue, Giulia, Welch, Alex J., Cheng, Wen-Hui, and Atwater, Harry A. Fri . "Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes". United States. https://doi.org/10.1021/acs.nanolett.8b00241. https://www.osti.gov/servlets/purl/1469320.
@article{osti_1469320,
title = {Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes},
author = {DuChene, Joseph S. and Tagliabue, Giulia and Welch, Alex J. and Cheng, Wen-Hui and Atwater, Harry A.},
abstractNote = {Harvesting nonequilibrium hot carriers from plasmonic- metal nanostructures offers unique opportunities for driving photo- chemical reactions at the nanoscale. Despite numerous examples of hot electron-driven processes, the realization of plasmonic systems capable of harvesting hot holes from metal nanostructures has eluded the nascent field of plasmonic photocatalysis. In this work, we fabricate gold/p-type gallium nitride (Au/p-GaN) Schottky junctions tailored for photoelectrochemical studies of plasmon-induced hot-hole capture and conversion. Despite the presence of an interfacial Schottky barrier to hot-hole injection of more than 1 eV across the Au/p-GaN heterojunction, plasmonic Au/p-GaN photocathodes exhibit photoelectrochemical properties consistent with the injection of hot holes from Au nanoparticles into p- GaN upon plasmon excitation. The photocurrent action spectrum of the plasmonic photocathodes faithfully follows the surface plasmon resonance absorption spectrum of the Au nanoparticles and open-circuit voltage studies demonstrate a sustained photovoltage during plasmon excitation. Comparison with Ohmic Au/p-NiO heterojunctions confirms that the vast majority of hot holes generated via interband transitions in Au are sufficiently hot to inject above the 1.1 eV interfacial Schottky barrier at the Au/p-GaN heterojunction. We further investigated plasmon-driven photoelectrochemical CO2 reduction with the Au/p-GaN photocathodes and observed improved selectivity for CO production over H2 evolution in aqueous electrolytes. Taken together, our results offer experimental validation of photoexcited hot holes more than 1 eV below the Au Fermi level and demonstrate a photoelectrochemical platform for harvesting hot carriers to drive solar-to-fuel energy conversion.},
doi = {10.1021/acs.nanolett.8b00241},
journal = {Nano Letters},
number = 4,
volume = 18,
place = {United States},
year = {Fri Mar 09 00:00:00 EST 2018},
month = {Fri Mar 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 240 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Hot carrier collection across an interfacial Schottky barrier at metal/semiconductor heterojunctions. (a) Qualitative energy band diagram of a plasmonic metal (e.g. Au) in physical contact with an n-type semiconductor (e.g. TiO2), depicting the conduction band edge (ECB), valence band edge (EVB), band gap (EG), Fermi level (EF), andmore » the interfacial Schottky barrier (ΦB). Plasmon excitation creates hot electrons (red) and hot holes (blue) above and below the EF of Au, respectively, with a distribution of energies governed by the metal band structure and the incident photon energy (hv = 2.4 eV). Only those hot electrons with sufficient energies above ΦB (indicated by dashed line) can surmount the interfacial barrier and populate available CB levels of the n-type semiconductor support. (b) Qualitative energy band diagram of a plasmonic metal (e.g. Au) in physical contact with a p-type semiconductor (e.g. p-GaN), depicting ECB, EVB, EG, EF, and ΦB. Plasmon excitation creates hot electrons (red) and hot holes (blue) above and below the EF of Au, respectively. Only those hot holes with sufficient energies below ΦB (indicated by dashed line) can surmount the interfacial barrier and populate available VB levels of the p-type semiconductor support.« less

Save / Share:

Works referenced in this record:

Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
journal, November 2011

  • Linic, Suljo; Christopher, Phillip; Ingram, David B.
  • Nature Materials, Vol. 10, Issue 12
  • DOI: 10.1038/nmat3151

Plasmon-induced hot carrier science and technology
journal, January 2015

  • Brongersma, Mark L.; Halas, Naomi J.; Nordlander, Peter
  • Nature Nanotechnology, Vol. 10, Issue 1
  • DOI: 10.1038/nnano.2014.311

Hot Charge Carrier Transmission from Plasmonic Nanostructures
journal, May 2017


Photochemical transformations on plasmonic metal nanoparticles
journal, May 2015

  • Linic, Suljo; Aslam, Umar; Boerigter, Calvin
  • Nature Materials, Vol. 14, Issue 6
  • DOI: 10.1038/nmat4281

What’s so Hot about Electrons in Metal Nanoparticles?
journal, June 2017


Plasmon-Induced Hot Carriers in Metallic Nanoparticles
journal, July 2014

  • Manjavacas, Alejandro; Liu, Jun G.; Kulkarni, Vikram
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn502445f

Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry
journal, December 2015

  • Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha
  • ACS Nano, Vol. 10, Issue 1
  • DOI: 10.1021/acsnano.5b06199

Theoretical predictions for hot-carrier generation from surface plasmon decay
journal, December 2014

  • Sundararaman, Ravishankar; Narang, Prineha; Jermyn, Adam S.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6788

Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals
journal, June 2015

  • Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8044

Theory of Photoinjection of Hot Plasmonic Carriers from Metal Nanostructures into Semiconductors and Surface Molecules
journal, July 2013

  • Govorov, Alexander O.; Zhang, Hui; Gun’ko, Yurii K.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 32
  • DOI: 10.1021/jp405430m

Relaxation of Plasmon-Induced Hot Carriers
journal, December 2017


Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots
journal, August 2015

  • Harutyunyan, Hayk; Martinson, Alex B. F.; Rosenmann, Daniel
  • Nature Nanotechnology, Vol. 10, Issue 9
  • DOI: 10.1038/nnano.2015.165

Optical Studies of Dynamics in Noble Metal Nanostructures
journal, June 2011


Photodetection with Active Optical Antennas
journal, May 2011

  • Knight, M. W.; Sobhani, H.; Nordlander, P.
  • Science, Vol. 332, Issue 6030, p. 702-704
  • DOI: 10.1126/science.1203056

Distinguishing between plasmon-induced and photoexcited carriers in a device geometry
journal, July 2015

  • Zheng, Bob Y.; Zhao, Hangqi; Manjavacas, Alejandro
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8797

Metamaterial Perfect Absorber Based Hot Electron Photodetection
journal, May 2014


Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime
journal, June 2011

  • Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl200187v

Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna
journal, February 2014

  • Chalabi, Hamidreza; Schoen, David; Brongersma, Mark L.
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4044373

Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials
journal, September 2015

  • Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9379

Plasmonic Photosensitization of a Wide Band Gap Semiconductor: Converting Plasmons to Charge Carriers
journal, December 2011

  • Mubeen, Syed; Hernandez-Sosa, Gerardo; Moses, Daniel
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203457v

An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
journal, February 2013

  • Mubeen, Syed; Lee, Joun; Singh, Nirala
  • Nature Nanotechnology, Vol. 8, Issue 4
  • DOI: 10.1038/nnano.2013.18

Panchromatic Photoproduction of H 2 with Surface Plasmons
journal, February 2015


Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles
journal, June 2017


Heterometallic antenna−reactor complexes for photocatalysis
journal, July 2016

  • Swearer, Dayne F.; Zhao, Hangqi; Zhou, Linan
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 32
  • DOI: 10.1073/pnas.1609769113

Hot-Electron-Induced Dissociation of H 2 on Gold Nanoparticles Supported on SiO 2
journal, December 2013

  • Mukherjee, Shaunak; Zhou, Linan; Goodman, Amanda M.
  • Journal of the American Chemical Society, Vol. 136, Issue 1
  • DOI: 10.1021/ja411017b

Aluminum Nanocrystals as a Plasmonic Photocatalyst for Hydrogen Dissociation
journal, January 2016


Al–Pd Nanodisk Heterodimers as Antenna–Reactor Photocatalysts
journal, September 2016


Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation
journal, February 2017

  • Zhang, Xiao; Li, Xueqian; Zhang, Du
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14542

Controlling energy flow in multimetallic nanostructures for plasmonic catalysis
journal, July 2017

  • Aslam, Umar; Chavez, Steven; Linic, Suljo
  • Nature Nanotechnology, Vol. 12, Issue 10
  • DOI: 10.1038/nnano.2017.131

Plasmon-Assisted Water Splitting Using Two Sides of the Same SrTiO 3 Single-Crystal Substrate: Conversion of Visible Light to Chemical Energy
journal, July 2014

  • Zhong, Yuqing; Ueno, Kosei; Mori, Yuko
  • Angewandte Chemie International Edition, Vol. 53, Issue 39
  • DOI: 10.1002/anie.201404926

Direct observation of charge separation on Au localized surface plasmons
journal, January 2013

  • Sá, Jacinto; Tagliabue, Giulia; Friedli, Peter
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42731e

The Role of Photon Energy and Semiconductor Substrate in the Plasmon-Mediated Photooxidation of Citrate by Silver Nanoparticles
journal, November 2013

  • Thrall, Elizabeth S.; Preska Steinberg, Asher; Wu, Xiaomu
  • The Journal of Physical Chemistry C, Vol. 117, Issue 49
  • DOI: 10.1021/jp409586z

Plasmon-Mediated Syntheses of Metallic Nanostructures
journal, November 2013

  • Langille, Mark R.; Personick, Michelle L.; Mirkin, Chad A.
  • Angewandte Chemie International Edition, Vol. 52, Issue 52
  • DOI: 10.1002/anie.201301875

Photovoltage Mechanism for Room Light Conversion of Citrate Stabilized Silver Nanocrystal Seeds to Large Nanoprisms
journal, July 2008

  • Wu, Xiaomu; Redmond, Peter L.; Liu, Haitao
  • Journal of the American Chemical Society, Vol. 130, Issue 29
  • DOI: 10.1021/ja8018669

Hot Hole Photoelectrochemistry on Au@SiO 2 @Au Nanoparticles
journal, April 2017

  • Schlather, Andrea E.; Manjavacas, Alejandro; Lauchner, Adam
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 9
  • DOI: 10.1021/acs.jpclett.7b00563

Plasmon Induced Photovoltage and Charge Separation in Citrate-Stabilized Gold Nanoparticles
journal, July 2010

  • Wu, Xiaomu; Thrall, Elizabeth S.; Liu, Haitao
  • The Journal of Physical Chemistry C, Vol. 114, Issue 30
  • DOI: 10.1021/jp102720r

Polyvinylpyrrolidone-induced anisotropic growth of gold nanoprisms in plasmon-driven synthesis
journal, July 2016

  • Zhai, Yueming; DuChene, Joseph S.; Wang, Yi-Chung
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4683

Activation Energies of Plasmonic Catalysts
journal, April 2016


The case for plasmon-derived hot carrier devices
journal, January 2015


Properties of Plasmon-Induced Photoelectric Conversion on a TiO 2 /NiO p–n Junction with Au Nanoparticles
journal, March 2016

  • Nakamura, Keisuke; Oshikiri, Tomoya; Ueno, Kosei
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 6
  • DOI: 10.1021/acs.jpclett.6b00291

Direct Plasmon-Driven Photoelectrocatalysis
journal, August 2015


Band-Edge Potentials of n-Type and p-Type GaN
journal, January 2003

  • Beach, J. D.; Collins, R. T.; Turner, J. A.
  • Journal of The Electrochemical Society, Vol. 150, Issue 7
  • DOI: 10.1149/1.1577542

Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges
journal, January 2016

  • Kibria, M. G.; Mi, Z.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA07364B

p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements
journal, February 2017


Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays
journal, April 2015

  • Kibria, M. G.; Chowdhury, F. A.; Zhao, S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7797

Low-resistance ohmic contacts to p -type GaN achieved by the oxidation of Ni/Au films
journal, October 1999

  • Ho, Jin-Kuo; Jong, Charng-Shyang; Chiu, Chien C.
  • Journal of Applied Physics, Vol. 86, Issue 8
  • DOI: 10.1063/1.371392

Mechanism for Ohmic contact formation of oxidized Ni/Au on p -type GaN
journal, August 2003

  • Jang, Ho Won; Kim, Soo Young; Lee, Jong-Lam
  • Journal of Applied Physics, Vol. 94, Issue 3
  • DOI: 10.1063/1.1586983

Investigation of the chemistry and electronic properties of metal/gallium nitride interfaces
journal, July 1998

  • Wu, C. I.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 16, Issue 4
  • DOI: 10.1116/1.590151

Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures
journal, May 2011

  • Christopher, Phillip; Xin, Hongliang; Linic, Suljo
  • Nature Chemistry, Vol. 3, Issue 6
  • DOI: 10.1038/nchem.1032

Wafer-Level Artificial Photosynthesis for CO 2 Reduction into CH 4 and CO Using GaN Nanowires
journal, August 2015


Energy-Conversion Properties of Vapor-Liquid-Solid-Grown Silicon Wire-Array Photocathodes
journal, January 2010

  • Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.
  • Science, Vol. 327, Issue 5962, p. 185-187
  • DOI: 10.1126/science.1180783

Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications
journal, February 2010

  • Kelzenberg, Michael D.; Boettcher, Shannon W.; Petykiewicz, Jan A.
  • Nature Materials, Vol. 9, Issue 3, p. 239-244
  • DOI: 10.1038/nmat2635

Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy
journal, June 2011

  • Wang, Defa; Pierre, Adrien; Kibria, Md Golam
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl2006802

Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode
journal, August 2013

  • AlOtaibi, B.; Nguyen, H. P. T.; Zhao, S.
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl402156e

Plasmon-Enhanced Photocurrent Generation and Water Oxidation with a Gold Nanoisland-Loaded Titanium Dioxide Photoelectrode
journal, October 2012

  • Shi, Xu; Ueno, Kosei; Takabayashi, Naoki
  • The Journal of Physical Chemistry C, Vol. 117, Issue 6
  • DOI: 10.1021/jp3064036

Near-Infrared Plasmon-Assisted Water Oxidation
journal, April 2012

  • Nishijima, Yoshiaki; Ueno, Kosei; Kotake, Yuki
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 10
  • DOI: 10.1021/jz3003316

Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts
journal, August 2017

  • Wang, Shengyang; Gao, Yuying; Miao, Shu
  • Journal of the American Chemical Society, Vol. 139, Issue 34
  • DOI: 10.1021/jacs.7b04470

Works referencing / citing this record:

Comparing Photoelectrochemical Methanol Oxidation Mechanisms for Gold versus Titanium Nitride Nanoparticles Dispersed in TiO 2  Matrix
journal, January 2019

  • Baturina, Olga A.; Epshteyn, Albert; Simpkins, Blake S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.1211910jes

Growing In‐Plane Multiplex Plasmonic Arrays for Synergistic Enhanced Photocurrent Response
journal, December 2019

  • Liang, Wenkai; Li, Dong; Sun, Yinghui
  • Advanced Materials Interfaces, Vol. 7, Issue 2
  • DOI: 10.1002/admi.201900966

Plasmons and inter-band transitions of hexagonal close packed gold nanoparticles
journal, July 2019

  • Peng, Siying; Meng, Andrew C.; Braun, Michael R.
  • Applied Physics Letters, Vol. 115, Issue 5
  • DOI: 10.1063/1.5100991

Recent Progress on Titanium Dioxide Nanomaterials for Photocatalytic Applications
journal, August 2018


Silicon nanomembrane-based near infrared phototransistor with positive and negative photodetections
journal, January 2019

  • Pan, Ruobing; Guo, Qinglei; Cao, Jun
  • Nanoscale, Vol. 11, Issue 36
  • DOI: 10.1039/c9nr05189a

Arbitrary control of the diffusion potential between a plasmonic metal and a semiconductor by an angstrom-thick interface dipole layer
journal, January 2020

  • Oshikiri, Tomoya; Sawayanagi, Hiroki; Nakamura, Keisuke
  • The Journal of Chemical Physics, Vol. 152, Issue 3
  • DOI: 10.1063/1.5134900

Plasmon‐Induced Hot Carrier Separation across Dual Interface in Gold–Nickel Phosphide Heterojunction for Photocatalytic Water Splitting
journal, December 2019

  • Mondal, Indranil; Lee, Hyunhwa; Kim, Heeyoung
  • Advanced Functional Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adfm.201908239

The Development of Cocatalysts for Photoelectrochemical CO 2 Reduction
journal, December 2018


Boosting Electrocatalytic Hydrogen Evolution over Metal-Organic Frameworks by Plasmon-Induced Hot-Electron Injection
journal, June 2019

  • Wang, Shan-Shan; Jiao, Long; Qian, Yunyang
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201906134

Ammonia photosynthesis via an association pathway using a plasmonic photoanode and a zirconium cathode
journal, January 2019

  • Oshikiri, Tomoya; Ueno, Kosei; Misawa, Hiroaki
  • Green Chemistry, Vol. 21, Issue 16
  • DOI: 10.1039/c9gc01658a

Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction
journal, July 2019


Plasmonic metal–semiconductor heterostructures for hot-electron-driven photochemistry
journal, January 2020


Energy-tunable photocatalysis by hot carriers generated by surface plasmon polaritons
journal, January 2019

  • Ahn, Wonmi; Vurgaftman, Igor; Pietron, Jeremy J.
  • Journal of Materials Chemistry A, Vol. 7, Issue 12
  • DOI: 10.1039/c8ta12304g

Silver-Copper Oxide Heteronanostructures for the Plasmonic-Enhanced Photocatalytic Oxidation of N-Hexane in the Visible-NIR Range
journal, November 2019

  • Suarez, Hugo; Ramirez, Adrian; Bueno-Alejo, Carlos J.
  • Materials, Vol. 12, Issue 23
  • DOI: 10.3390/ma12233858

Plasmon damping depends on the chemical nature of the nanoparticle interface
journal, March 2019

  • Foerster, Benjamin; Spata, Vincent A.; Carter, Emily A.
  • Science Advances, Vol. 5, Issue 3
  • DOI: 10.1126/sciadv.aav0704

Photoelectrochemical CO 2 reduction to adjustable syngas on grain-boundary-mediated a-Si/TiO 2 /Au photocathodes with low onset potentials
journal, January 2019

  • Li, Chengcheng; Wang, Tuo; Liu, Bin
  • Energy & Environmental Science, Vol. 12, Issue 3
  • DOI: 10.1039/c8ee02768d

Plasmonic hot electron transfer in anisotropic Pt–Au nanodisks boosts electrochemical reactions in the visible-NIR region
journal, January 2019

  • Chen, Guanying; Sun, Mingjuan; Li, Juan
  • Nanoscale, Vol. 11, Issue 40
  • DOI: 10.1039/c9nr06372b

High‐Rate, Tunable Syngas Production with Artificial Photosynthetic Cells
journal, April 2019


Plasmonic hot charge carriers activated Ni centres of metal–organic frameworks for the oxygen evolution reaction
journal, January 2019

  • Hu, Wen-Chao; Shi, Yi; Zhou, Yue
  • Journal of Materials Chemistry A, Vol. 7, Issue 17
  • DOI: 10.1039/c9ta00847k

Plasmon‐Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage
journal, December 2018

  • Mascaretti, Luca; Dutta, Aveek; Kment, Štěpán
  • Advanced Materials, Vol. 31, Issue 31
  • DOI: 10.1002/adma.201805513

A nanofabricated plasmonic core–shell-nanoparticle library
journal, January 2019

  • Susarrey-Arce, Arturo; Czajkowski, Krzysztof M.; Darmadi, Iwan
  • Nanoscale, Vol. 11, Issue 44
  • DOI: 10.1039/c9nr08097j

Hot electron-driven photocatalysis and transient absorption spectroscopy in plasmon resonant grating structures
journal, January 2019


Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid
journal, May 2019


Enhanced Electrocatalysis via Boosted Separation of Hot Charge Carriers of Plasmonic Gold Nanoparticles Deposited on Reduced Graphene Oxide
journal, January 2019

  • Liao, Xue‐Wei; Wang, Shan‐Shan; Xu, Gui‐Yin
  • ChemElectroChem, Vol. 6, Issue 5
  • DOI: 10.1002/celc.201801683

Colloidal silver diphosphide (AgP2) nanocrystals as low overpotential catalysts for CO2 reduction to tunable syngas
journal, December 2019


Boosting Electrocatalytic Hydrogen Evolution over Metal–Organic Frameworks by Plasmon‐Induced Hot‐Electron Injection
journal, June 2019

  • Wang, Shan‐Shan; Jiao, Long; Qian, Yunyang
  • Angewandte Chemie, Vol. 131, Issue 31
  • DOI: 10.1002/ange.201906134

High‐Rate, Tunable Syngas Production with Artificial Photosynthetic Cells
journal, June 2019

  • Zhang, Hongwen; Ming, Jintao; Zhao, Jiwu
  • Angewandte Chemie International Edition, Vol. 58, Issue 23
  • DOI: 10.1002/anie.201902361

Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times
journal, July 2019


Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures
journal, September 2018


Plasmonic hole ejection involved in plasmon-induced charge separation
journal, January 2020

  • Tatsuma, Tetsu; Nishi, Hiroyasu
  • Nanoscale Horizons, Vol. 5, Issue 4
  • DOI: 10.1039/c9nh00649d

Enhancement of Selective Fixation of Dinitrogen to Ammonia under Modal Strong Coupling Conditions
journal, April 2020

  • Oshikiri, Tomoya; Shi, Xu; Misawa, Hiroaki
  • European Journal of Inorganic Chemistry, Vol. 2020, Issue 15-16
  • DOI: 10.1002/ejic.202000340

Efficient plasmon-hot electron conversion in Ag–CsPbBr3 hybrid nanocrystals
journal, March 2019


Designer photonic dynamics by using non-uniform electron temperature distribution for on-demand all-optical switching times
journal, July 2019


Current Transport Mechanism in Palladium Schottky Contact on Si-Based Freestanding GaN
journal, February 2020

  • Lee, Moonsang; Ahn, Chang Wan; Vu, Thi Kim Oanh
  • Nanomaterials, Vol. 10, Issue 2
  • DOI: 10.3390/nano10020297

Silver-copper oxide heteronanostructures for the plasmonic-enhanced photocatalytic oxidation of N-hexane in the visible-NIR range
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.