skip to main content

DOE PAGESDOE PAGES

Title: Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas

In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on the properties of RF waves has not been quantified experimentally, it is of interest to carry out a theoretical study to determine if fluctuations can affect the propagation characteristics of RF waves. Usually, the difference between the plasma density inside the filament and the background plasma density is sizable, the ratio of the density difference to the background density being of order one. Generally, this precludes the use of geometrical optics in determining the effect of fluctuations, since the relevant ratio has to be much less than one, typically, of the order of 10% or less. In this study, a full-wave, analytical model is developed for the scattering of a RF plane wave by a cylindrical plasma filament. It is assumed that the plasma inside and outside the filament is cold and uniform and that the major axis of the filament is aligned alongmore » the toroidal magnetic field. The ratio of the density inside the filament to the density of the background plasma is not restricted. The theoretical framework applies to the scattering of any cold plasma wave. In order to satisfy the boundary conditions at the interface between the filament and the background plasma, the electromagnetic fields inside and outside the filament need to have the same k , the wave vector parallel to the ambient magnetic field, as the incident plane wave. Consequently, in contrast to the scattering of a RF wave by a spherical blob [Ram et al., Phys. Plasmas 20, 056110-1–056110-10 (2013)], the scattering by a field-aligned filament does not broaden the k spectrum. However, the filament induces side-scattering leading to surface waves and can also couple some power to the cold plasma wave different from the incident wave. The changes induced by a filament in the propagation of electron cyclotron waves and lower hybrid waves are illustrated by numerical results displaying the properties of the Poynting vector. The Poynting flux in the wake of the filament, and directed towards the core of the plasma, develops a spatial structure due to diffraction and shadowing. Finally and thus, the fluctuations affect the uniformity of power flow into the plasma.« less
Authors:
 [1] ; ORCiD logo [2]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  2. National Technical Univ. of Athens, Zografou (Greece). School of Electrical and Computer Engineering
Publication Date:
Grant/Contract Number:
FC02-01ER54648; FG02-91ER54109; FG02-99ER54525; CfP-WP14-ER-01/Swiss Confederation-03; SEP-210130335
Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Research Org:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); National Technical Univ. of Athens, Zografou (Greece)
Sponsoring Org:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24); European Union (EU)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; plasma waves; plasma confinement; surface waves; plasma density; tokamaks; RF waves; electromagnetism; electrodynamics; leptons; cyclotrons
OSTI Identifier:
1469318
Alternate Identifier(s):
OSTI ID: 1237986

Ram, Abhay K., and Hizanidis, Kyriakos. Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas. United States: N. p., Web. doi:10.1063/1.4941588.
Ram, Abhay K., & Hizanidis, Kyriakos. Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas. United States. doi:10.1063/1.4941588.
Ram, Abhay K., and Hizanidis, Kyriakos. 2016. "Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas". United States. doi:10.1063/1.4941588. https://www.osti.gov/servlets/purl/1469318.
@article{osti_1469318,
title = {Scattering of radio frequency waves by cylindrical density filaments in tokamak plasmas},
author = {Ram, Abhay K. and Hizanidis, Kyriakos},
abstractNote = {In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. Radio frequency (RF) electromagnetic waves, excited by antenna structures placed near the wall of a tokamak, have to propagate through the scrape-off layer before reaching the core of the plasma. While the effect of fluctuations on the properties of RF waves has not been quantified experimentally, it is of interest to carry out a theoretical study to determine if fluctuations can affect the propagation characteristics of RF waves. Usually, the difference between the plasma density inside the filament and the background plasma density is sizable, the ratio of the density difference to the background density being of order one. Generally, this precludes the use of geometrical optics in determining the effect of fluctuations, since the relevant ratio has to be much less than one, typically, of the order of 10% or less. In this study, a full-wave, analytical model is developed for the scattering of a RF plane wave by a cylindrical plasma filament. It is assumed that the plasma inside and outside the filament is cold and uniform and that the major axis of the filament is aligned along the toroidal magnetic field. The ratio of the density inside the filament to the density of the background plasma is not restricted. The theoretical framework applies to the scattering of any cold plasma wave. In order to satisfy the boundary conditions at the interface between the filament and the background plasma, the electromagnetic fields inside and outside the filament need to have the same k∥, the wave vector parallel to the ambient magnetic field, as the incident plane wave. Consequently, in contrast to the scattering of a RF wave by a spherical blob [Ram et al., Phys. Plasmas 20, 056110-1–056110-10 (2013)], the scattering by a field-aligned filament does not broaden the k∥ spectrum. However, the filament induces side-scattering leading to surface waves and can also couple some power to the cold plasma wave different from the incident wave. The changes induced by a filament in the propagation of electron cyclotron waves and lower hybrid waves are illustrated by numerical results displaying the properties of the Poynting vector. The Poynting flux in the wake of the filament, and directed towards the core of the plasma, develops a spatial structure due to diffraction and shadowing. Finally and thus, the fluctuations affect the uniformity of power flow into the plasma.},
doi = {10.1063/1.4941588},
journal = {Physics of Plasmas},
number = 2,
volume = 23,
place = {United States},
year = {2016},
month = {2}
}