skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on September 10, 2019

Title: A Bayesian Approach to Predict Solubility Parameters

Authors:
ORCiD logo [1] ; ORCiD logo [1] ;  [2] ;  [2] ;  [3] ; ORCiD logo [4]
  1. Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138 USA
  2. Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7 91058 Erlangen Germany
  3. Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7 91058 Erlangen Germany, Bavarian Center for Applied Energy Research (ZAE Bayern), Immerwahrstrasse 2 91058 Erlangen Germany
  4. Department of Chemistry and Chemical Biology, Harvard University, Cambridge MA 02138 USA, Canadian Institute for Advanced Research, Toronto Ontario M5G 1Z8 Canada, Department of Computer Science, University of Toronto, Toronto Ontario M5S 3H7 Canada
Publication Date:
Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Theory and Simulations
Additional Journal Information:
Journal Name: Advanced Theory and Simulations Journal Volume: 2 Journal Issue: 1; Journal ID: ISSN 2513-0390
Publisher:
Wiley Blackwell (John Wiley & Sons)
Sponsoring Org:
USDOE
Country of Publication:
Country unknown/Code not available
Language:
English
OSTI Identifier:
1469250

Sanchez-Lengeling, Benjamin, Roch, Loïc M., Perea, José Darío, Langner, Stefan, Brabec, Christoph J., and Aspuru-Guzik, Alán. A Bayesian Approach to Predict Solubility Parameters. Country unknown/Code not available: N. p., Web. doi:10.1002/adts.201800069.
Sanchez-Lengeling, Benjamin, Roch, Loïc M., Perea, José Darío, Langner, Stefan, Brabec, Christoph J., & Aspuru-Guzik, Alán. A Bayesian Approach to Predict Solubility Parameters. Country unknown/Code not available. doi:10.1002/adts.201800069.
Sanchez-Lengeling, Benjamin, Roch, Loïc M., Perea, José Darío, Langner, Stefan, Brabec, Christoph J., and Aspuru-Guzik, Alán. 2018. "A Bayesian Approach to Predict Solubility Parameters". Country unknown/Code not available. doi:10.1002/adts.201800069.
@article{osti_1469250,
title = {A Bayesian Approach to Predict Solubility Parameters},
author = {Sanchez-Lengeling, Benjamin and Roch, Loïc M. and Perea, José Darío and Langner, Stefan and Brabec, Christoph J. and Aspuru-Guzik, Alán},
abstractNote = {},
doi = {10.1002/adts.201800069},
journal = {Advanced Theory and Simulations},
number = 1,
volume = 2,
place = {Country unknown/Code not available},
year = {2018},
month = {9}
}

Works referenced in this record:

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992
  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005
  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006
  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%
journal, May 2010
  • Liang, Yongye; Xu, Zheng; Xia, Jiangbin
  • Advanced Materials, Vol. 22, Issue 20, p. E135-E138
  • DOI: 10.1002/adma.200903528