skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A fingerprint based metric for measuring similarities of crystalline structures

Abstract

Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. In this paper, based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. Finally, the new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.

Authors:
 [1];  [2];  [1];  [1];  [3];  [3];  [3]; ORCiD logo [4];  [1];  [5];  [1]
  1. Univ. of Basel (Switzerland). Dept. of Physics
  2. Univ. of Basel (Switzerland). Dept. of Physics; Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
  3. Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran)
  4. Shahid Beheshti Univ., Tehran (Iran). Physics Dept.
  5. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States); Univ. of Basel (Switzerland)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Swiss National Science Foundation (SNSF)
OSTI Identifier:
1469171
Alternate Identifier(s):
OSTI ID: 1235591
Grant/Contract Number:  
FG02-07ER46433; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 144; Journal Issue: 3; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; carbides; theoretical computer science; symmetry functions; electronic noise; machine learning; chemical elements; perovskites; classical statistical mechanics; crystal structure; potential energy surfaces

Citation Formats

Zhu, Li, Amsler, Maximilian, Fuhrer, Tobias, Schaefer, Bastian, Faraji, Somayeh, Rostami, Samare, Ghasemi, S. Alireza, Sadeghi, Ali, Grauzinyte, Migle, Wolverton, Chris, and Goedecker, Stefan. A fingerprint based metric for measuring similarities of crystalline structures. United States: N. p., 2016. Web. doi:10.1063/1.4940026.
Zhu, Li, Amsler, Maximilian, Fuhrer, Tobias, Schaefer, Bastian, Faraji, Somayeh, Rostami, Samare, Ghasemi, S. Alireza, Sadeghi, Ali, Grauzinyte, Migle, Wolverton, Chris, & Goedecker, Stefan. A fingerprint based metric for measuring similarities of crystalline structures. United States. doi:10.1063/1.4940026.
Zhu, Li, Amsler, Maximilian, Fuhrer, Tobias, Schaefer, Bastian, Faraji, Somayeh, Rostami, Samare, Ghasemi, S. Alireza, Sadeghi, Ali, Grauzinyte, Migle, Wolverton, Chris, and Goedecker, Stefan. Thu . "A fingerprint based metric for measuring similarities of crystalline structures". United States. doi:10.1063/1.4940026. https://www.osti.gov/servlets/purl/1469171.
@article{osti_1469171,
title = {A fingerprint based metric for measuring similarities of crystalline structures},
author = {Zhu, Li and Amsler, Maximilian and Fuhrer, Tobias and Schaefer, Bastian and Faraji, Somayeh and Rostami, Samare and Ghasemi, S. Alireza and Sadeghi, Ali and Grauzinyte, Migle and Wolverton, Chris and Goedecker, Stefan},
abstractNote = {Measuring similarities/dissimilarities between atomic structures is important for the exploration of potential energy landscapes. However, the cell vectors together with the coordinates of the atoms, which are generally used to describe periodic systems, are quantities not directly suitable as fingerprints to distinguish structures. In this paper, based on a characterization of the local environment of all atoms in a cell, we introduce crystal fingerprints that can be calculated easily and define configurational distances between crystalline structures that satisfy the mathematical properties of a metric. This distance between two configurations is a measure of their similarity/dissimilarity and it allows in particular to distinguish structures. Finally, the new method can be a useful tool within various energy landscape exploration schemes, such as minima hopping, random search, swarm intelligence algorithms, and high-throughput screenings.},
doi = {10.1063/1.4940026},
journal = {Journal of Chemical Physics},
number = 3,
volume = 144,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 18 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Numerically stable algorithms for the computation of reduced unit cells
journal, December 2003

  • Grosse-Kunstleve, R. W.; Sauter, N. K.; Adams, P. D.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 60, Issue 1
  • DOI: 10.1107/S010876730302186X

The geometry of Niggli reduction: BGAOL –embedding Niggli reduction and analysis of boundaries
journal, January 2014

  • Andrews, Lawrence C.; Bernstein, Herbert J.
  • Journal of Applied Crystallography, Vol. 47, Issue 1
  • DOI: 10.1107/S1600576713031002

Recognizing molecular patterns by machine learning: An agnostic structural definition of the hydrogen bond
journal, November 2014

  • Gasparotto, Piero; Ceriotti, Michele
  • The Journal of Chemical Physics, Vol. 141, Issue 17
  • DOI: 10.1063/1.4900655

Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems
journal, June 2004

  • Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 120, Issue 21
  • DOI: 10.1063/1.1724816

CALYPSO: A method for crystal structure prediction
journal, October 2012


High-throughput and data mining with ab initio methods
journal, December 2004

  • Morgan, Dane; Ceder, Gerbrand; Curtarolo, Stefano
  • Measurement Science and Technology, Vol. 16, Issue 1
  • DOI: 10.1088/0957-0233/16/1/039

Low-density silicon allotropes for photovoltaic applications
journal, July 2015


Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels
journal, July 1929


Fast clustering of equivalent structures in crystal structure prediction
journal, June 1997


Projector augmented-wave method
journal, December 1994


Materials discovery via CALYPSO methodology
journal, April 2015


DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method
journal, July 2007

  • Aradi, B.; Hourahine, B.; Frauenheim, Th.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp070186p

Charting the complete elastic properties of inorganic crystalline compounds
journal, March 2015

  • de Jong, Maarten; Chen, Wei; Angsten, Thomas
  • Scientific Data, Vol. 2, Issue 1
  • DOI: 10.1038/sdata.2015.9

COMPACK : a program for identifying crystal structure similarity using distances
journal, January 2005

  • Chisholm, James Alexander; Motherwell, Sam
  • Journal of Applied Crystallography, Vol. 38, Issue 1
  • DOI: 10.1107/S0021889804027074

The discovery of unexpected isomers in sodium heptamers by Born–Oppenheimer molecular dynamics
journal, September 2009

  • Vásquez-Pérez, José Manuel; Martínez, Gabriel Ulises Gamboa; Köster, Andreas M.
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3231134

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Ab initio random structure searching
journal, January 2011


Transformation processes in La Al O 3 : Neutron diffraction, dielectric, thermal, optical, and Raman studies
journal, August 2005


On representing chemical environments
journal, May 2013


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Crystal structure prediction via particle-swarm optimization
journal, September 2010


The Electrolyte Genome project: A big data approach in battery materials discovery
journal, June 2015


Highly optimized tight-binding model of silicon
journal, January 1997


A logical calculus of the ideas immanent in nervous activity
journal, December 1943

  • McCulloch, Warren S.; Pitts, Walter
  • The Bulletin of Mathematical Biophysics, Vol. 5, Issue 4
  • DOI: 10.1007/bf02478259

Crystal Structure of Cold Compressed Graphite
journal, February 2012


i-PI: A Python interface for ab initio path integral molecular dynamics simulations
journal, March 2014

  • Ceriotti, Michele; More, Joshua; Manolopoulos, David E.
  • Computer Physics Communications, Vol. 185, Issue 3
  • DOI: 10.1016/j.cpc.2013.10.027

Conducting Boron Sheets Formed by the Reconstruction of the α -Boron (111) Surface
journal, September 2013


USPEX—Evolutionary crystal structure prediction
journal, December 2006

  • Glass, Colin W.; Oganov, Artem R.; Hansen, Nikolaus
  • Computer Physics Communications, Vol. 175, Issue 11-12
  • DOI: 10.1016/j.cpc.2006.07.020

Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces
journal, January 1978


Proposed definition of crystal substructure and substructural similarity
journal, August 2014


The Hungarian method for the assignment problem
journal, March 1955


Support-vector networks
journal, September 1995

  • Cortes, Corinna; Vapnik, Vladimir
  • Machine Learning, Vol. 20, Issue 3
  • DOI: 10.1007/bf00994018

Reactions of xenon with iron and nickel are predicted in the Earth's inner core
journal, April 2014

  • Zhu, Li; Liu, Hanyu; Pickard, Chris J.
  • Nature Chemistry, Vol. 6, Issue 7
  • DOI: 10.1038/nchem.1925

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

Machine Learning for Quantum Mechanical Properties of Atoms in Molecules
journal, July 2015

  • Rupp, Matthias; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 16
  • DOI: 10.1021/acs.jpclett.5b01456

How to quantify energy landscapes of solids
journal, March 2009

  • Oganov, Artem R.; Valle, Mario
  • The Journal of Chemical Physics, Vol. 130, Issue 10
  • DOI: 10.1063/1.3079326

Novel Structural Motifs in Low Energy Phases of LiAlH 4
journal, May 2012


Unexpected Stable Stoichiometries of Sodium Chlorides
journal, December 2013


The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


Gaussian approximation potentials: A brief tutorial introduction
journal, April 2015

  • Bartók, Albert P.; Csányi, Gábor
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24927

Bond-orientational order in liquids and glasses
journal, July 1983

  • Steinhardt, Paul J.; Nelson, David R.; Ronchetti, Marco
  • Physical Review B, Vol. 28, Issue 2
  • DOI: 10.1103/PhysRevB.28.784

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems – Part II
journal, January 2001

  • Schön, J. C.; Jansen, Martin
  • Zeitschrift für Kristallographie - Crystalline Materials, Vol. 216, Issue 7
  • DOI: 10.1524/zkri.216.7.361.20362

Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Identifying duplicate crystal structures: XtalComp, an open-source solution
journal, March 2012


AFLOW: An automatic framework for high-throughput materials discovery
journal, June 2012


Constructing high-dimensional neural network potentials: A tutorial review
journal, March 2015

  • Behler, Jörg
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24890

The geometry of Niggli reduction: SAUC – search of alternative unit cells
journal, January 2014

  • McGill, Keith J.; Asadi, Mojgan; Karakasheva, Maria T.
  • Journal of Applied Crystallography, Vol. 47, Issue 1
  • DOI: 10.1107/S1600576713031014

First principles view on chemical compound space: Gaining rigorous atomistic control of molecular properties
journal, February 2013

  • von Lilienfeld, O. Anatole
  • International Journal of Quantum Chemistry, Vol. 113, Issue 12
  • DOI: 10.1002/qua.24375

Continuous similarity measure between nonoverlapping X-ray powder diagrams of different crystal modifications
journal, October 1993

  • Karfunkel, H. R.; Rohde, B.; Leusen, F. J. J.
  • Journal of Computational Chemistry, Vol. 14, Issue 10
  • DOI: 10.1002/jcc.540141002

Metrics for measuring distances in configuration spaces
journal, November 2013

  • Sadeghi, Ali; Ghasemi, S. Alireza; Schaefer, Bastian
  • The Journal of Chemical Physics, Vol. 139, Issue 18
  • DOI: 10.1063/1.4828704

Crystal structure prediction using the minima hopping method
journal, December 2010

  • Amsler, Maximilian; Goedecker, Stefan
  • The Journal of Chemical Physics, Vol. 133, Issue 22
  • DOI: 10.1063/1.3512900

Spiral chain O4 form of dense oxygen
journal, January 2012

  • Zhu, L.; Wang, Z.; Wang, Y.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 3
  • DOI: 10.1073/pnas.1119375109

The Cambridge Structural Database: a quarter of a million crystal structures and rising
journal, May 2002


A generalized expression for the similarity of spectra: application to powder diffraction pattern classification
journal, January 2001


The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation
journal, January 1999

  • Woodley, Scott M.; Battle, Peter D.; Gale, Julian D.
  • Physical Chemistry Chemical Physics, Vol. 1, Issue 10
  • DOI: 10.1039/a901227c

    Works referencing / citing this record:

    Insightful classification of crystal structures using deep learning
    journal, July 2018


    Comparing molecules and solids across structural and alchemical space
    journal, January 2016

    • De, Sandip; Bartók, Albert P.; Csányi, Gábor
    • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
    • DOI: 10.1039/c6cp00415f

    Mapping and classifying molecules from a high-throughput structural database
    journal, February 2017


    Insightful classification of crystal structures using deep learning
    journal, July 2018


    Comparing molecules and solids across structural and alchemical space
    journal, January 2016

    • De, Sandip; Bartók, Albert P.; Csányi, Gábor
    • Physical Chemistry Chemical Physics, Vol. 18, Issue 20
    • DOI: 10.1039/c6cp00415f

    Mapping and classifying molecules from a high-throughput structural database
    journal, February 2017


    Quantifying similarity of pore-geometry in nanoporous materials
    journal, May 2017

    • Lee, Yongjin; Barthel, Senja D.; Dłotko, Paweł
    • Nature Communications, Vol. 8, Issue 1
    • DOI: 10.1038/ncomms15396

    Using symmetry to elucidate the importance of stoichiometry in colloidal crystal assembly
    journal, May 2019


    Unsupervised discovery of solid-state lithium ion conductors
    journal, November 2019


    Structure of aqueous NaOH solutions: insights from neural-network-based molecular dynamics simulations
    journal, January 2017

    • Hellström, Matti; Behler, Jörg
    • Physical Chemistry Chemical Physics, Vol. 19, Issue 1
    • DOI: 10.1039/c6cp06547c

    Classification of spatially resolved molecular fingerprints for machine learning applications and development of a codebase for their implementation
    journal, January 2018

    • Reveil, Mardochee; Clancy, Paulette
    • Molecular Systems Design & Engineering, Vol. 3, Issue 3
    • DOI: 10.1039/c8me00003d

    Surface reconstructions and premelting of the (100) CaF 2 surface
    journal, January 2019

    • Faraji, Somayeh; Ghasemi, S. Alireza; Parsaeifard, Behnam
    • Physical Chemistry Chemical Physics, Vol. 21, Issue 29
    • DOI: 10.1039/c9cp02213a

    Perspective: Machine learning potentials for atomistic simulations
    journal, November 2016

    • Behler, Jörg
    • The Journal of Chemical Physics, Vol. 145, Issue 17
    • DOI: 10.1063/1.4966192

    Solid harmonic wavelet scattering for predictions of molecule properties
    journal, June 2018

    • Eickenberg, Michael; Exarchakis, Georgios; Hirn, Matthew
    • The Journal of Chemical Physics, Vol. 148, Issue 24
    • DOI: 10.1063/1.5023798

    Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials
    journal, June 2018

    • Imbalzano, Giulio; Anelli, Andrea; Giofré, Daniele
    • The Journal of Chemical Physics, Vol. 148, Issue 24
    • DOI: 10.1063/1.5024611

    Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems
    journal, September 2018

    • Rostami, Samare; Amsler, Maximilian; Ghasemi, S. Alireza
    • The Journal of Chemical Physics, Vol. 149, Issue 12
    • DOI: 10.1063/1.5040005

    Unsupervised machine learning in atomistic simulations, between predictions and understanding
    journal, April 2019

    • Ceriotti, Michele
    • The Journal of Chemical Physics, Vol. 150, Issue 15
    • DOI: 10.1063/1.5091842

    Construction of crystal structure prototype database: methods and applications
    journal, March 2017

    • Su, Chuanxun; Lv, Jian; Li, Quan
    • Journal of Physics: Condensed Matter, Vol. 29, Issue 16
    • DOI: 10.1088/1361-648x/aa63cd

    From DFT to machine learning: recent approaches to materials science–a review
    journal, May 2019

    • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
    • Journal of Physics: Materials, Vol. 2, Issue 3
    • DOI: 10.1088/2515-7639/ab084b

    High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride
    journal, March 2017


    Navigating at Will on the Water Phase Diagram
    journal, December 2017


    Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis
    journal, March 2018