DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry

Abstract

The importance of methane emissions from pan-Arctic lakes in the global carbon cycle has been suggested by recent studies. These studies indicated that climate change influences this methane source mainly in two ways: the warming of lake sediments and the evolution of thermokarst lakes. Few studies have been conducted to quantify the two impacts together in a unified modeling framework. Here we adapt a region-specific lake evolution model to the pan-Arctic scale and couple it with a lake methane biogeochemical model to quantify the change of this freshwater methane source in the 21st century. Our simulations show that the extent of thaw lakes will increase throughout the 21st century in the northern lowlands of the pan-Arctic where the reworking of epigenetic ice in drained lake basins will continue. The projected methane emissions by 2100 are 28.3 ± 4.5 Tg CH4 yr-1 under a low warming scenario (Representative Concentration Pathways (RCPs) 2.6) and 32.7±5.2 Tg CH4 yr-1 under a high warming scenario (RCP 8.5), which are about 2.5 and 2.9 times the simulated present-day emissions. Most of the emitted methane originates from nonpermafrost carbon stock. For permafrost carbon, the methanogenesis will mineralize a cumulative amount of 3.4 ± 0.8 Pg Cmore » under RCP 2.6 and 3.9 ± 0.9 Pg C under RCP 8.5 from 2006 to 2099. The projected emissions could increase atmospheric methane concentrations by 55.0–69.3 ppb. In conclusion, this study further indicates that the warming of lake sediments dominates the increase of methane emissions from pan-Arctic lakes in the future.« less

Authors:
 [1];  [2]
  1. Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Purdue Univ., West Lafayette, IN (United States). Purdue Climate Change Research Center
  2. Purdue Univ., West Lafayette, IN (United States). Dept. of Earth, Atmospheric, and Planetary Sciences; Purdue Univ., West Lafayette, IN (United States). Purdue Climate Change Research Center, and Dept. of Agronomy
Publication Date:
Research Org.:
Purdue Univ., West Lafayette, IN (United States); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1469113
Alternate Identifier(s):
OSTI ID: 1402311
Grant/Contract Number:  
FG02-08ER64599; AC02-05CH11231; DE‐FG02‐08ER64599
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Biogeosciences
Additional Journal Information:
Journal Volume: 120; Journal Issue: 12; Journal ID: ISSN 2169-8953
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; methane emissions; pan‐Arctic lakes; Arctic landscape evolution; permafrost carbon

Citation Formats

Tan, Zeli, and Zhuang, Qianlai. Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry. United States: N. p., 2015. Web. doi:10.1002/2015JG003184.
Tan, Zeli, & Zhuang, Qianlai. Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry. United States. https://doi.org/10.1002/2015JG003184
Tan, Zeli, and Zhuang, Qianlai. Wed . "Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry". United States. https://doi.org/10.1002/2015JG003184. https://www.osti.gov/servlets/purl/1469113.
@article{osti_1469113,
title = {Methane emissions from pan-Arctic lakes during the 21st century: An analysis with process-based models of lake evolution and biogeochemistry},
author = {Tan, Zeli and Zhuang, Qianlai},
abstractNote = {The importance of methane emissions from pan-Arctic lakes in the global carbon cycle has been suggested by recent studies. These studies indicated that climate change influences this methane source mainly in two ways: the warming of lake sediments and the evolution of thermokarst lakes. Few studies have been conducted to quantify the two impacts together in a unified modeling framework. Here we adapt a region-specific lake evolution model to the pan-Arctic scale and couple it with a lake methane biogeochemical model to quantify the change of this freshwater methane source in the 21st century. Our simulations show that the extent of thaw lakes will increase throughout the 21st century in the northern lowlands of the pan-Arctic where the reworking of epigenetic ice in drained lake basins will continue. The projected methane emissions by 2100 are 28.3 ± 4.5 Tg CH4 yr-1 under a low warming scenario (Representative Concentration Pathways (RCPs) 2.6) and 32.7±5.2 Tg CH4 yr-1 under a high warming scenario (RCP 8.5), which are about 2.5 and 2.9 times the simulated present-day emissions. Most of the emitted methane originates from nonpermafrost carbon stock. For permafrost carbon, the methanogenesis will mineralize a cumulative amount of 3.4 ± 0.8 Pg C under RCP 2.6 and 3.9 ± 0.9 Pg C under RCP 8.5 from 2006 to 2099. The projected emissions could increase atmospheric methane concentrations by 55.0–69.3 ppb. In conclusion, this study further indicates that the warming of lake sediments dominates the increase of methane emissions from pan-Arctic lakes in the future.},
doi = {10.1002/2015JG003184},
journal = {Journal of Geophysical Research. Biogeosciences},
number = 12,
volume = 120,
place = {United States},
year = {2015},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Causes and consequences of rapid thermokarst development in permafrost or glacial terrain
journal, January 2002

  • Harris, Stuart A.
  • Permafrost and Periglacial Processes, Vol. 13, Issue 3
  • DOI: 10.1002/ppp.419

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

Disappearing Arctic Lakes
journal, June 2005


A refined mapping of Arctic lakes using Landsat imagery
journal, November 2015


Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Detecting the signature of permafrost thaw in Arctic rivers: SIGNATURE OF PERMAFROST THAW IN RIVERS
journal, April 2015

  • Spencer, Robert G. M.; Mann, Paul J.; Dittmar, Thorsten
  • Geophysical Research Letters, Vol. 42, Issue 8
  • DOI: 10.1002/2015GL063498

Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska
journal, January 2003

  • Yoshikawa, Kenji; Hinzman, Larry D.
  • Permafrost and Periglacial Processes, Vol. 14, Issue 2
  • DOI: 10.1002/ppp.451

Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH 4 during the last deglaciation
journal, February 2012

  • Brosius, L. S.; Walter Anthony, K. M.; Grosse, G.
  • Journal of Geophysical Research: Biogeosciences, Vol. 117, Issue G1
  • DOI: 10.1029/2011JG001810

Modeling the impediment of methane ebullition bubbles by seasonal lake ice
journal, January 2014


An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

Climatic and ecological controls on ice segregation and thermokarst: The case history of a permafrost plateau in Northern Quebec
journal, September 1996


Bayesian recursive parameter estimation for hydrologic models
journal, October 2001

  • Thiemann, M.; Trosset, M.; Gupta, H.
  • Water Resources Research, Vol. 37, Issue 10
  • DOI: 10.1029/2000WR900405

Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages
journal, January 2008

  • Walter, K. M.; Chanton, J. P.; Chapin, F. S.
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2007JG000569

Reservoir Surfaces as Sources of Greenhouse Gases to the Atmosphere: A Global Estimate
journal, January 2000


North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon
journal, August 1997


Atmospheric Trends and Lifetime of CH3CCI3 and Global OH Concentrations
journal, July 1995


Freshwater Methane Emissions Offset the Continental Carbon Sink
journal, January 2011


Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle
journal, January 2007

  • Jorgenson, M. Torre; Shur, Yuri
  • Journal of Geophysical Research, Vol. 112, Issue F2
  • DOI: 10.1029/2006JF000531

Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice
journal, January 2008

  • West, J. J.; Plug, L. J.
  • Journal of Geophysical Research, Vol. 113, Issue F1
  • DOI: 10.1029/2006JF000696

Variability in greenhouse gas emissions from permafrost thaw ponds
journal, November 2009

  • Laurion, Isabelle; Vincent, Warwick F.; MacIntyre, Sally
  • Limnology and Oceanography, Vol. 55, Issue 1
  • DOI: 10.4319/lo.2010.55.1.0115

Regional contribution of CO 2 and CH 4 fluxes from the fluvial network in a lowland boreal landscape of Québec : CO2 and CH4 emission from boreal rivers
journal, January 2014

  • Campeau, Audrey; Lapierre, Jean-François; Vachon, Dominic
  • Global Biogeochemical Cycles, Vol. 28, Issue 1
  • DOI: 10.1002/2013GB004685

Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
journal, September 2006

  • Walter, K. M.; Zimov, S. A.; Chanton, J. P.
  • Nature, Vol. 443, Issue 7107
  • DOI: 10.1038/nature05040

Expert assessment of vulnerability of permafrost carbon to climate change
journal, March 2013


Methane bubbling from northern lakes: present and future contributions to the global methane budget
journal, May 2007

  • Walter, Katey M.; Smith, Laurence C.; Stuart Chapin, F.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, Issue 1856
  • DOI: 10.1098/rsta.2007.2036

Global atmospheric methane: budget, changes and dangers
journal, May 2011

  • Dlugokencky, Edward J.; Nisbet, Euan G.; Fisher, Rebecca
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 369, Issue 1943
  • DOI: 10.1098/rsta.2010.0341

Permafrost temperature records: Indicators of climate change
journal, January 2002

  • Romanovsky, V.; Burgess, M.; Smith, S.
  • Eos, Transactions American Geophysical Union, Vol. 83, Issue 50
  • DOI: 10.1029/2002EO000402

Simulation of the Last 21 000 Years Using Accelerated Transient Boundary Conditions
journal, September 2007

  • Timm, Oliver; Timmermann, Axel
  • Journal of Climate, Vol. 20, Issue 17
  • DOI: 10.1175/JCLI4237.1

Subarctic Thermokarst Ponds: Investigating Recent Landscape Evolution and Sediment Dynamics in Thawed Permafrost of Northern Québec (Canada)
journal, February 2014

  • Bouchard, Frédéric; Francus, Pierre; Pienitz, Reinhard
  • Arctic, Antarctic, and Alpine Research, Vol. 46, Issue 1
  • DOI: 10.1657/1938-4246-46.1.251

Development and validation of a global database of lakes, reservoirs and wetlands
journal, August 2004


Impacts of climate, lake size, and supra- and sub-permafrost groundwater flow on lake-talik evolution, Yukon Flats, Alaska (USA)
journal, January 2013

  • Wellman, Tristan P.; Voss, Clifford I.; Walvoord, Michelle A.
  • Hydrogeology Journal, Vol. 21, Issue 1
  • DOI: 10.1007/s10040-012-0941-4

Emission of trace gases and aerosols from biomass burning
journal, December 2001

  • Andreae, M. O.; Merlet, P.
  • Global Biogeochemical Cycles, Vol. 15, Issue 4
  • DOI: 10.1029/2000GB001382

A COMPARISON OF DELTA CHANGE AND DOWNSCALED GCM SCENARIOS FOR THREE MOUNTAINOUS BASINS IN THE UNITED STATES 1
journal, April 2000

  • Hay, Lauren E.; Wilby, Robert L.; Leavesley, George H.
  • JAWRA Journal of the American Water Resources Association, Vol. 36, Issue 2
  • DOI: 10.1111/j.1752-1688.2000.tb04276.x

The Roles of CO 2 and Orbital Forcing in Driving Southern Hemispheric Temperature Variations during the Last 21 000 Yr
journal, April 2009

  • Timmermann, Axel; Timm, Oliver; Stott, Lowell
  • Journal of Climate, Vol. 22, Issue 7
  • DOI: 10.1175/2008JCLI2161.1

Long-term C accumulation and total C stocks in boreal lakes in northern Québec: C TOTAL STOCKS IN BOREAL LAKES IN QUÉBEC
journal, October 2012

  • Ferland, Marie-Eve; del Giorgio, Paul A.; Teodoru, Cristian R.
  • Global Biogeochemical Cycles, Vol. 26, Issue 4
  • DOI: 10.1029/2011GB004241

Thermokarst Lakes as a Source of Atmospheric CH 4 During the Last Deglaciation
journal, October 2007


Thermokarst Lakes on the Arctic Coastal Plain of Alaska: Geomorphic Controls on Bathymetry: Arctic Lakes Bathymetry
journal, July 2012

  • Hinkel, Kenneth M.; Sheng, Yongwei; Lenters, John D.
  • Permafrost and Periglacial Processes, Vol. 23, Issue 3
  • DOI: 10.1002/ppp.1744

Reduction in areal extent of high-latitude wetlands in response to permafrost thaw
journal, June 2011

  • Avis, Christopher A.; Weaver, Andrew J.; Meissner, Katrin J.
  • Nature Geoscience, Vol. 4, Issue 7
  • DOI: 10.1038/ngeo1160

Effects of excess ground ice on projections of permafrost in a warming climate
journal, December 2014


Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images: SHRINKING PONDS ACROSS BOREAL ALASKA
journal, October 2006

  • Riordan, Brian; Verbyla, David; McGuire, A. David
  • Journal of Geophysical Research: Biogeosciences, Vol. 111, Issue G4
  • DOI: 10.1029/2005JG000150

Heterotrophic bacterio‐plankton in thawed lakes of the northern part of Western Siberia controls the CO 2 flux to the atmosphere
journal, August 2009

  • Shirokova, L. S.; Pokrovsky, O. S.; Kirpotin, S. N.
  • International Journal of Environmental Studies, Vol. 66, Issue 4
  • DOI: 10.1080/00207230902758071

Methane emissions from permafrost thaw lakes limited by lake drainage
journal, May 2011

  • van Huissteden, J.; Berrittella, C.; Parmentier, F. J. W.
  • Nature Climate Change, Vol. 1, Issue 2
  • DOI: 10.1038/nclimate1101

Climate-forced changes in available energy and methane bubbling from subarctic lakes: Climate and lake CH4 ebullition
journal, March 2015

  • Thornton, Brett F.; Wik, Martin; Crill, Patrick M.
  • Geophysical Research Letters, Vol. 42, Issue 6
  • DOI: 10.1002/2015GL063189

One of the possible mechanisms of thermokarst lakes drainage in West‐Siberian North
journal, October 2008

  • Kirpotin, S.; Polishchuk, Yu.; Zakharova, E.
  • International Journal of Environmental Studies, Vol. 65, Issue 5
  • DOI: 10.1080/00207230802525208

Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia
journal, January 2015


Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback
journal, July 2013


A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch
journal, July 2014

  • Anthony, K. M. Walter; Zimov, S. A.; Grosse, G.
  • Nature, Vol. 511, Issue 7510
  • DOI: 10.1038/nature13560

Methane fluxes show consistent temperature dependence across microbial to ecosystem scales
journal, March 2014

  • Yvon-Durocher, Gabriel; Allen, Andrew P.; Bastviken, David
  • Nature, Vol. 507, Issue 7493
  • DOI: 10.1038/nature13164

Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska
journal, January 2011

  • Jones, B. M.; Grosse, G.; Arp, C. D.
  • Journal of Geophysical Research, Vol. 116
  • DOI: 10.1029/2011JG001666

Atmospheric Methane:  Trends and Cycles of Sources and Sinks
journal, April 2007

  • Khalil, M. Aslam Khan; Butenhoff, Christopher L.; Rasmussen, Reinhold A.
  • Environmental Science & Technology, Vol. 41, Issue 7
  • DOI: 10.1021/es061791t

A first pan-Arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution
journal, January 2007

  • Smith, Laurence C.; Sheng, Yongwei; MacDonald, Glen M.
  • Permafrost and Periglacial Processes, Vol. 18, Issue 2
  • DOI: 10.1002/ppp.581

Energy input is primary controller of methane bubbling in subarctic lakes: WIK ET. AL.; ENERGY INPUT CONTROLS METHANE EBULLITION
journal, January 2014

  • Wik, Martin; Thornton, Brett F.; Bastviken, David
  • Geophysical Research Letters, Vol. 41, Issue 2
  • DOI: 10.1002/2013GL058510

Methane emissions from Amazonian Rivers and their contribution to the global methane budget
journal, June 2014

  • Sawakuchi, Henrique O.; Bastviken, David; Sawakuchi, André O.
  • Global Change Biology, Vol. 20, Issue 9
  • DOI: 10.1111/gcb.12646

Soil organic carbon pools in the northern circumpolar permafrost region: SOIL ORGANIC CARBON POOLS
journal, June 2009

  • Tarnocai, C.; Canadell, J. G.; Schuur, E. A. G.
  • Global Biogeochemical Cycles, Vol. 23, Issue 2
  • DOI: 10.1029/2008GB003327

Arctic lakes are continuous methane sources to the atmosphere under warming conditions
journal, May 2015


A refined mapping of Arctic lakes using Landsat imagery
text, January 2016


Multivariate Observations
journal, February 1986


Modeling the impediment of methane ebullition bubbles by seasonal lake ice
journal, January 2014


Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM
journal, January 2011

  • Riley, W. J.; Subin, Z. M.; Lawrence, D. M.
  • Biogeosciences Discussions, Vol. 8, Issue 1
  • DOI: 10.5194/bgd-8-1733-2011

A refined mapping of Arctic lakes using Landsat imagery
text, January 2016


Works referencing / citing this record:

Role of gas ebullition in the methane budget of a deep subtropical lake: What can we learn from process-based modeling?: CH 4 budget of a deep subtropical lake
journal, June 2017

  • Schmid, Martin; Ostrovsky, Ilia; McGinnis, Daniel F.
  • Limnology and Oceanography, Vol. 62, Issue 6
  • DOI: 10.1002/lno.10598

Mixing processes in small arctic lakes during spring
journal, August 2019

  • Cortés, Alicia; MacIntyre, Sally
  • Limnology and Oceanography, Vol. 65, Issue 2
  • DOI: 10.1002/lno.11296

AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska
journal, February 2019

  • Pitcher, Lincoln H.; Pavelsky, Tamlin M.; Smith, Laurence C.
  • Water Resources Research, Vol. 55, Issue 2
  • DOI: 10.1029/2018wr023274

Space‐Based Observations for Understanding Changes in the Arctic‐Boreal Zone
journal, January 2020

  • Duncan, Bryan N.; Ott, Lesley E.; Abshire, James B.
  • Reviews of Geophysics, Vol. 58, Issue 1
  • DOI: 10.1029/2019rg000652

21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
journal, August 2018

  • Walter Anthony, Katey; Schneider von Deimling, Thomas; Nitze, Ingmar
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-05738-9

Minor contribution of small thaw ponds to the pools of carbon and methane in the inland waters of the permafrost-affected part of the Western Siberian Lowland
journal, March 2018

  • Polishchuk, Y. M.; Bogdanov, A. N.; Muratov, I. N.
  • Environmental Research Letters, Vol. 13, Issue 4
  • DOI: 10.1088/1748-9326/aab046

Dissolved methane in the residual basins of the Aral Sea
journal, June 2019

  • Izhitskaya, E. S.; Egorov, A. V.; Zavialov, P. O.
  • Environmental Research Letters, Vol. 14, Issue 6
  • DOI: 10.1088/1748-9326/ab0391

Detectability of Arctic methane sources at six sites performing continuous atmospheric measurements
journal, January 2017

  • Thonat, Thibaud; Saunois, Marielle; Bousquet, Philippe
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 13
  • DOI: 10.5194/acp-17-8371-2017

Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
journal, January 2019

  • Schaller, Carsten; Kittler, Fanny; Foken, Thomas
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 6
  • DOI: 10.5194/acp-19-4041-2019

Exceptional summer warming leads to contrasting outcomes for methane cycling in small Arctic lakes of Greenland
journal, January 2017

  • Cadieux, Sarah B.; White, Jeffrey R.; Pratt, Lisa M.
  • Biogeosciences, Vol. 14, Issue 3
  • DOI: 10.5194/bg-14-559-2017