skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Convergence in the temperature response of leaf respiration across biomes and plant functional types

Abstract

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. By analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leafmore » respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [6];  [7];  [6];  [8];  [9];  [10];  [11];  [12];  [11];  [13];  [14];  [15];  [16]
  1. Australian National Univ., Canberra, ACT (Australia). Research School of Biology and Division of Plant Sciences; Marine Biological Lab., Woods Hole, MA (United States). The Ecosystems Center
  2. Australian National Univ., Canberra, ACT (Australia). Research School of Biology and Division of Plant Sciences; Univ. of Sheffield (United Kingdom). Animal and Plant Sciences
  3. Univ. of Western Sydney, NSW (Australia). Hawkesbury Inst. for the Environment; Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Forest Resources
  4. Univ. of Western Sydney, NSW (Australia). Hawkesbury Inst. for the Environment
  5. Australian National Univ., Canberra, ACT (Australia). Research School of Biology and Division of Plant Sciences; Univ. of Peradeniya (Sri Lanka). Faculty of Agriculture
  6. Australian National Univ., Canberra, ACT (Australia). Research School of Biology and Division of Plant Sciences
  7. Australian National Univ., Canberra, ACT (Australia). Research School of Biology and Division of Plant Sciences; Univ. of Western Sydney, NSW (Australia). Hawkesbury Inst. for the Environment
  8. Australian National Univ., Canberra, ACT (Australia). ARC Center of Excellence in Plant Energy Biology and Research School of Biology
  9. Stanford Univ., CA (United States). Carnegie Inst. for Science and Dept. of Global Ecology
  10. Umea Univ. (Sweden). Umea Plant Science Center and Dept. of Plant Physiology
  11. Centre for Ecology and Hydrology (CEH), Wallingford (United Kingdom). Biosphere-Atmosphere Interactions
  12. Columbia Univ., New York, NY (United States). Dept. of Earth and Environment Sciences and Dept. of Ecology, Evolution, and Environmental Biology
  13. Swedish Univ. of Agricultural Sciences (SLU), Umea (Sweden). Umea Plant Science Center and Dept. of Forest Genetics and Plant Physiology
  14. Australian National Univ., Canberra, ACT (Australia). Research School of Biology and Division of Plant Sciences; Univ. of Edinburgh, Scotland (United Kingdom). School of Geosciences
  15. Univ. of Canterbury, Christchurch (New Zealand). Center for Integrative Ecology and School of Biological Sciences
  16. Australian National Univ., Canberra, ACT (Australia). ARC Center of Excellence in Plant Energy Biology, Research School of Biology and Division of Plant Sciences
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States)
Sponsoring Org.:
Office of Science (SC), Biological and Environmental Research (BER) (SC-23); Australian Research Council (ARC); Natural Environment Research Council (NERC); National Science Foundation (NSF)
OSTI Identifier:
1469106
Grant/Contract Number:  
FG02-07ER64456; DP0986823; DP130101252; CE140100008; FT0991448; FT110100457; DP140103415; NE/F002149/1
Resource Type:
Accepted Manuscript
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Volume: 113; Journal Issue: 14; Journal ID: ISSN 0027-8424
Publisher:
National Academy of Sciences, Washington, DC (United States)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; temperature sensitivity; climate models; carbon exchange; Q10; thermal response

Citation Formats

Heskel, Mary A., O’Sullivan, Odhran S., Reich, Peter B., Tjoelker, Mark G., Weerasinghe, Lasantha K., Penillard, Aurore, Egerton, John J. G., Creek, Danielle, Bloomfield, Keith J., Xiang, Jen, Sinca, Felipe, Stangl, Zsofia R., Martinez-de la Torre, Alberto, Griffin, Kevin L., Huntingford, Chris, Hurry, Vaughan, Meir, Patrick, Turnbull, Matthew H., and Atkin, Owen K. Convergence in the temperature response of leaf respiration across biomes and plant functional types. United States: N. p., 2016. Web. doi:10.1073/pnas.1520282113.
Heskel, Mary A., O’Sullivan, Odhran S., Reich, Peter B., Tjoelker, Mark G., Weerasinghe, Lasantha K., Penillard, Aurore, Egerton, John J. G., Creek, Danielle, Bloomfield, Keith J., Xiang, Jen, Sinca, Felipe, Stangl, Zsofia R., Martinez-de la Torre, Alberto, Griffin, Kevin L., Huntingford, Chris, Hurry, Vaughan, Meir, Patrick, Turnbull, Matthew H., & Atkin, Owen K. Convergence in the temperature response of leaf respiration across biomes and plant functional types. United States. doi:10.1073/pnas.1520282113.
Heskel, Mary A., O’Sullivan, Odhran S., Reich, Peter B., Tjoelker, Mark G., Weerasinghe, Lasantha K., Penillard, Aurore, Egerton, John J. G., Creek, Danielle, Bloomfield, Keith J., Xiang, Jen, Sinca, Felipe, Stangl, Zsofia R., Martinez-de la Torre, Alberto, Griffin, Kevin L., Huntingford, Chris, Hurry, Vaughan, Meir, Patrick, Turnbull, Matthew H., and Atkin, Owen K. Mon . "Convergence in the temperature response of leaf respiration across biomes and plant functional types". United States. doi:10.1073/pnas.1520282113. https://www.osti.gov/servlets/purl/1469106.
@article{osti_1469106,
title = {Convergence in the temperature response of leaf respiration across biomes and plant functional types},
author = {Heskel, Mary A. and O’Sullivan, Odhran S. and Reich, Peter B. and Tjoelker, Mark G. and Weerasinghe, Lasantha K. and Penillard, Aurore and Egerton, John J. G. and Creek, Danielle and Bloomfield, Keith J. and Xiang, Jen and Sinca, Felipe and Stangl, Zsofia R. and Martinez-de la Torre, Alberto and Griffin, Kevin L. and Huntingford, Chris and Hurry, Vaughan and Meir, Patrick and Turnbull, Matthew H. and Atkin, Owen K.},
abstractNote = {Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration–temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. By analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.},
doi = {10.1073/pnas.1520282113},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 14,
volume = 113,
place = {United States},
year = {2016},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 53 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Modelling respiration of vegetation: evidence for a general temperature-dependent Q10
journal, February 2001


Emission pathways consistent with a 2 °C global temperature limit
journal, October 2011

  • Rogelj, Joeri; Hare, William; Lowe, Jason
  • Nature Climate Change, Vol. 1, Issue 8
  • DOI: 10.1038/nclimate1258

Thermal acclimation of shoot respiration in an Arctic woody plant species subjected to 22 years of warming and altered nutrient supply
journal, April 2014

  • Heskel, Mary A.; Greaves, Heather E.; Turnbull, Matthew H.
  • Global Change Biology, Vol. 20, Issue 8
  • DOI: 10.1111/gcb.12544

Global Convergence in the Temperature Sensitivity of Respiration at Ecosystem Level
journal, July 2010


A hierarchical analysis of terrestrial ecosystem model Biome-BGC: Equilibrium analysis and model calibration
journal, September 2009


Global convergence in leaf respiration from estimates of thermal acclimation across time and space
journal, April 2015

  • Vanderwel, Mark C.; Slot, Martijn; Lichstein, Jeremy W.
  • New Phytologist, Vol. 207, Issue 4
  • DOI: 10.1111/nph.13417

On the Temperature Dependence of Soil Respiration
journal, June 1994

  • Lloyd, J.; Taylor, J. A.
  • Functional Ecology, Vol. 8, Issue 3
  • DOI: 10.2307/2389824

Sensitivity analysis of a process-based ecosystem model: Pinpointing parameterization and structural issues: GLOBAL SENSITIVITY ANALYSIS OF LPJ-GUESS
journal, April 2013

  • Pappas, Christoforos; Fatichi, Simone; Leuzinger, Sebastian
  • Journal of Geophysical Research: Biogeosciences, Vol. 118, Issue 2
  • DOI: 10.1002/jgrg.20035

Incorporating temperature-sensitive Q 10 and foliar respiration acclimation algorithms modifies modeled ecosystem responses to global change : R ACCLIMATION AND GLOBAL CHANGE
journal, February 2013

  • Wythers, Kirk R.; Reich, Peter B.; Bradford, John B.
  • Journal of Geophysical Research: Biogeosciences, Vol. 118, Issue 1
  • DOI: 10.1029/2011JG001897

The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data
journal, September 2014

  • Weedon, Graham P.; Balsamo, Gianpaolo; Bellouin, Nicolas
  • Water Resources Research, Vol. 50, Issue 9
  • DOI: 10.1002/2014WR015638

Effects of Size and Temperature on Metabolic Rate
journal, September 2001


Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants
journal, August 2008


Thermal acclimation and the dynamic response of plant respiration to temperature
journal, July 2003


Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
journal, November 2000

  • Cox, Peter M.; Betts, Richard A.; Jones, Chris D.
  • Nature, Vol. 408, Issue 6809
  • DOI: 10.1038/35041539

The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes
journal, January 2011

  • Best, M. J.; Pryor, M.; Clark, D. B.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-677-2011

The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics
journal, January 2011

  • Clark, D. B.; Mercado, L. M.; Sitch, S.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-701-2011

The link between a global 2 °C warming threshold and emissions in years 2020, 2050 and beyond
journal, January 2012


Global climate change and terrestrial net primary production
journal, May 1993

  • Melillo, Jerry M.; McGuire, A. David; Kicklighter, David W.
  • Nature, Vol. 363, Issue 6426
  • DOI: 10.1038/363234a0

Contrasting responses of a simple terrestrial ecosystem model to global change
journal, September 2000


Respiration as the main determinant of carbon balance in European forests
journal, April 2000

  • Valentini, R.; Matteucci, G.; Dolman, A. J.
  • Nature, Vol. 404, Issue 6780
  • DOI: 10.1038/35009084

Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups
journal, May 1998

  • Reich, Peter B.; Walters, Michael B.; Ellsworth, David S.
  • Oecologia, Vol. 114, Issue 4
  • DOI: 10.1007/s004420050471

Effects of Climate Change on Plant Respiration
journal, May 1991

  • Ryan, Michael G.
  • Ecological Applications, Vol. 1, Issue 2
  • DOI: 10.2307/1941808

Improving representation of leaf respiration in large-scale predictive climate-vegetation models
journal, April 2014

  • Atkin, Owen K.; Meir, Patrick; Turnbull, Matthew H.
  • New Phytologist, Vol. 202, Issue 3
  • DOI: 10.1111/nph.12686

Evaporation and surface temperature
journal, January 1981

  • Monteith, J. L.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 107, Issue 451
  • DOI: 10.1002/qj.49710745102

Very high resolution interpolated climate surfaces for global land areas
journal, January 2005

  • Hijmans, Robert J.; Cameron, Susan E.; Parra, Juan L.
  • International Journal of Climatology, Vol. 25, Issue 15
  • DOI: 10.1002/joc.1276

Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO 2
journal, September 2012


Global variability in leaf respiration in relation to climate, plant functional types and leaf traits
journal, January 2015

  • Atkin, Owen K.; Bloomfield, Keith J.; Reich, Peter B.
  • New Phytologist, Vol. 206, Issue 2
  • DOI: 10.1111/nph.13253

Improving the predictability of global CO 2 assimilation rates under climate change : CO
journal, May 2011

  • Ziehn, T.; Kattge, J.; Knorr, W.
  • Geophysical Research Letters, Vol. 38, Issue 10
  • DOI: 10.1029/2011GL047182

ATMOSPHERE: Plant Respiration in a Warmer World
journal, April 2006


The McCree–de Wit–Penning de Vries–Thornley Respiration Paradigms: 30 Years Later
journal, July 2000


High sensitivity of future global warming to land carbon cycle processes
journal, April 2012


General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types
journal, December 2014


High-resolution temperature responses of leaf respiration in snow gum ( Eucalyptus pauciflora ) reveal high-temperature limits to respiratory function : Temperature dependence of leaf respiration
journal, January 2013

  • O'Sullivan, Odhran S.; Weerasinghe, K. W. Lasantha K.; Evans, John R.
  • Plant, Cell & Environment, Vol. 36, Issue 7
  • DOI: 10.1111/pce.12057

Simulated resilience of tropical rainforests to CO2-induced climate change
journal, March 2013

  • Huntingford, Chris; Zelazowski, Przemyslaw; Galbraith, David
  • Nature Geoscience, Vol. 6, Issue 4
  • DOI: 10.1038/ngeo1741

Experimental Researches in Vegetable Assimilation and Respiration. IV.--A Quantitative Study of Carbon-Dioxide Assimilation and Leaf-Temperature in Natural Illumination
journal, September 1905

  • Blackman, F. F.; Matthaei, G. L. C.
  • Proceedings of the Royal Society B: Biological Sciences, Vol. 76, Issue 511
  • DOI: 10.1098/rspb.1905.0037

Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks
journal, October 2007

  • Canadell, J. G.; Le Quere, C.; Raupach, M. R.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 47
  • DOI: 10.1073/pnas.0702737104

Plant Respiration
journal, January 1953


Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data
journal, January 2011

  • Bonan, Gordon B.; Lawrence, Peter J.; Oleson, Keith W.
  • Journal of Geophysical Research, Vol. 116, Issue G2
  • DOI: 10.1029/2010JG001593

    Works referencing / citing this record:

    Interactions Between Land-Use Change and Climate-Carbon Cycle Feedbacks
    journal, April 2018


    A widespread thermodynamic effect, but maintenance of biological rates through space across life's major domains
    journal, October 2018

    • Sørensen, Jesper G.; White, Craig R.; Duffy, Grant A.
    • Proceedings of the Royal Society B: Biological Sciences, Vol. 285, Issue 1890
    • DOI: 10.1098/rspb.2018.1775

    Interactions Between Land-Use Change and Climate-Carbon Cycle Feedbacks
    journal, April 2018


    A widespread thermodynamic effect, but maintenance of biological rates through space across life's major domains
    journal, October 2018

    • Sørensen, Jesper G.; White, Craig R.; Duffy, Grant A.
    • Proceedings of the Royal Society B: Biological Sciences, Vol. 285, Issue 1890
    • DOI: 10.1098/rspb.2018.1775

    Climate and fragmentation affect forest structure at the southern border of Amazonia
    journal, January 2018

    • Reis, Simone Matias; Marimon, Beatriz Schwantes; Marimon Junior, Ben Hur
    • Plant Ecology & Diversity, Vol. 11, Issue 1
    • DOI: 10.1080/17550874.2018.1455230

    The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration
    journal, March 2017

    • Scafaro, Andrew P.; Negrini, A. Clarissa A.; O’Leary, Brendan
    • Plant Methods, Vol. 13, Issue 1
    • DOI: 10.1186/s13007-017-0169-3

    MODIS-Based Estimates of Global Terrestrial Ecosystem Respiration
    journal, February 2018

    • Ai, Jinlong; Jia, Gensuo; Epstein, Howard E.
    • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 2
    • DOI: 10.1002/2017jg004107

    Drivers of leaf carbon exchange capacity across biomes at the continental scale
    journal, June 2018

    • Smith, Nicholas G.; Dukes, Jeffrey S.
    • Ecology, Vol. 99, Issue 7
    • DOI: 10.1002/ecy.2370

    Divergent responses of ecosystem respiration components to livestock exclusion on the Qinghai Tibetan Plateau
    journal, May 2018

    • Chen, Ji; Luo, Yiqi; Xia, Jianyang
    • Land Degradation & Development, Vol. 29, Issue 6
    • DOI: 10.1002/ldr.2981

    Analyzing High‐Frequency Soil Respiration Using a Probabilistic Model in a Semiarid, Mediterranean Climate
    journal, March 2019

    • Anjileli, H.; Moftakhari, H. R.; Mazdiyasni, O.
    • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 3
    • DOI: 10.1029/2018jg004640

    Implications of improved representations of plant respiration in a changing climate
    journal, November 2017

    • Huntingford, Chris; Atkin, Owen K.; Martinez-de la Torre, Alberto
    • Nature Communications, Vol. 8, Issue 1
    • DOI: 10.1038/s41467-017-01774-z

    Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches
    journal, December 2019

    • Cruz, Mariana Vargas; Mori, Gustavo Maruyama; Signori-Müller, Caroline
    • Scientific Reports, Vol. 9, Issue 1
    • DOI: 10.1038/s41598-019-56469-w

    Coupling between the terrestrial carbon and water cycles—a review
    journal, July 2019

    • Gentine, Pierre; Green, Julia K.; Guérin, Marceau
    • Environmental Research Letters, Vol. 14, Issue 8
    • DOI: 10.1088/1748-9326/ab22d6

    Metabolic acclimation—a key to enhancing photosynthesis in changing environments?
    journal, April 2019

    • Herrmann, Helena A.; Schwartz, Jean-Marc; Johnson, Giles N.
    • Journal of Experimental Botany, Vol. 70, Issue 12
    • DOI: 10.1093/jxb/erz157

    Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat
    journal, May 2019

    • Posch, Bradley C.; Kariyawasam, Buddhima C.; Bramley, Helen
    • Journal of Experimental Botany, Vol. 70, Issue 19
    • DOI: 10.1093/jxb/erz257

    CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality
    journal, April 2018


    Is NPP proportional to GPP? Waring’s hypothesis 20 years on
    journal, May 2019


    Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats
    journal, November 2019

    • Apgaua, Deborah M. G.; Tng, David Y. P.; Forbes, Samantha J.
    • Tree Physiology, Vol. 39, Issue 11
    • DOI: 10.1093/treephys/tpz095

    Thermal limits of leaf metabolism across biomes
    journal, October 2016

    • O'sullivan, Odhran S.; Heskel, Mary A.; Reich, Peter B.
    • Global Change Biology, Vol. 23, Issue 1
    • DOI: 10.1111/gcb.13477

    Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types
    journal, May 2017

    • Smith, Nicholas G.; Dukes, Jeffrey S.
    • Global Change Biology, Vol. 23, Issue 11
    • DOI: 10.1111/gcb.13735

    Modelled net carbon gain responses to climate change in boreal trees: Impacts of photosynthetic parameter selection and acclimation
    journal, December 2018

    • Stinziano, Joseph R.; Bauerle, William L.; Way, Danielle A.
    • Global Change Biology, Vol. 25, Issue 4
    • DOI: 10.1111/gcb.14530

    Temperature sensitivity of biomass‐specific microbial exo‐enzyme activities and CO 2 efflux is resistant to change across short‐ and long‐term timescales
    journal, February 2019

    • Min, Kyungjin; Buckeridge, Kate; Ziegler, Susan E.
    • Global Change Biology, Vol. 25, Issue 5
    • DOI: 10.1111/gcb.14605

    Plant respiration: Controlled by photosynthesis or biomass?
    journal, October 2019

    • Collalti, Alessio; Tjoelker, Mark G.; Hoch, Günter
    • Global Change Biology, Vol. 26, Issue 3
    • DOI: 10.1111/gcb.14857

    The temperature optima for tree seedling photosynthesis and growth depend on water inputs
    journal, February 2020

    • Kumarathunge, Dushan P.; Drake, John E.; Tjoelker, Mark G.
    • Global Change Biology, Vol. 26, Issue 4
    • DOI: 10.1111/gcb.14975

    Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient
    journal, October 2017

    • Enquist, Brian J.; Bentley, Lisa Patrick; Shenkin, Alexander
    • Global Ecology and Biogeography, Vol. 26, Issue 12
    • DOI: 10.1111/geb.12645

    Assessing earth system model predictions of C 4 grass cover in North America: From the glacial era to the end of this century
    journal, November 2018

    • Still, Christopher J.; Cotton, Jennifer M.; Griffith, Daniel M.
    • Global Ecology and Biogeography, Vol. 28, Issue 2
    • DOI: 10.1111/geb.12830

    Changes in the chloroplastic CO 2 concentration explain much of the observed Kok effect: a model
    journal, March 2017

    • Farquhar, Graham D.; Busch, Florian A.
    • New Phytologist, Vol. 214, Issue 2
    • DOI: 10.1111/nph.14512

    Plant carbon metabolism and climate change: elevated CO 2 and temperature impacts on photosynthesis, photorespiration and respiration
    journal, July 2018

    • Dusenge, Mirindi Eric; Duarte, André Galvao; Way, Danielle A.
    • New Phytologist, Vol. 221, Issue 1
    • DOI: 10.1111/nph.15283

    Cold sensitivity of mitochondrial ATP synthase restricts oxidative phosphorylation in Arabidopsis thaliana
    journal, November 2018

    • Kerbler, Sandra M.; Taylor, Nicolas L.; Millar, A. Harvey
    • New Phytologist, Vol. 221, Issue 4
    • DOI: 10.1111/nph.15509

    Core principles which explain variation in respiration across biological scales
    journal, December 2018

    • O'Leary, Brendan M.; Asao, Shinichi; Millar, A. Harvey
    • New Phytologist, Vol. 222, Issue 2
    • DOI: 10.1111/nph.15576

    Climate warming and tree carbon use efficiency in a whole‐tree 13 CO 2 tracer study
    journal, February 2019

    • Drake, John E.; Furze, Morgan E.; Tjoelker, Mark G.
    • New Phytologist, Vol. 222, Issue 3
    • DOI: 10.1111/nph.15721

    Contrasting acclimation abilities of two dominant boreal conifers to elevated CO 2 and temperature: CO 2 and warming effects on spruce and pine
    journal, March 2018

    • Kurepin, Leonid V.; Stangl, Zsofia R.; Ivanov, Alexander G.
    • Plant, Cell & Environment, Vol. 41, Issue 6
    • DOI: 10.1111/pce.13158

    Can leaf net photosynthesis acclimate to rising and more variable temperatures?
    journal, February 2019

    • Vico, Giulia; Way, Danielle A.; Hurry, Vaughan
    • Plant, Cell & Environment, Vol. 42, Issue 6
    • DOI: 10.1111/pce.13525

    Phenotypic plasticity in locomotor performance of a monophyletic group of weevils accords with the ‘warmer is better’ hypothesis
    journal, April 2019

    • Treasure, Anne M.; Chown, Steven L.
    • The Journal of Experimental Biology, Vol. 222, Issue 9
    • DOI: 10.1242/jeb.195255

    Climate Change Impact, Adaptation, and Mitigation in Temperate Grazing Systems: A Review
    journal, December 2019

    • Ghahramani, Afshin; Howden, S. Mark; del Prado, Agustin
    • Sustainability, Vol. 11, Issue 24
    • DOI: 10.3390/su11247224

    Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests
    journal, January 2018