DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts

Abstract

Abstract The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single‐walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA‐wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid–nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1609981
Alternate Identifier(s):
OSTI ID: 1469026
Grant/Contract Number:  
FG02-08ER46488; DE‐FG02‐08ER46488 Mod 0008
Resource Type:
Accepted Manuscript
Journal Name:
Small
Additional Journal Information:
Journal Volume: 14; Journal Issue: 44; Journal ID: ISSN 1613-6810
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Chemistry; Science & Technology; Materials Science; Physics

Citation Formats

Lew, Tedrick Thomas Salim, Wong, Min Hao, Kwak, Seon-Yeong, Sinclair, Rosalie, Koman, Volodymyr B., and Strano, Michael S. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts. United States: N. p., 2018. Web. doi:10.1002/smll.201802086.
Lew, Tedrick Thomas Salim, Wong, Min Hao, Kwak, Seon-Yeong, Sinclair, Rosalie, Koman, Volodymyr B., & Strano, Michael S. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts. United States. https://doi.org/10.1002/smll.201802086
Lew, Tedrick Thomas Salim, Wong, Min Hao, Kwak, Seon-Yeong, Sinclair, Rosalie, Koman, Volodymyr B., and Strano, Michael S. Thu . "Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts". United States. https://doi.org/10.1002/smll.201802086. https://www.osti.gov/servlets/purl/1609981.
@article{osti_1609981,
title = {Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts},
author = {Lew, Tedrick Thomas Salim and Wong, Min Hao and Kwak, Seon-Yeong and Sinclair, Rosalie and Koman, Volodymyr B. and Strano, Michael S.},
abstractNote = {Abstract The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single‐walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA‐wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid–nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.},
doi = {10.1002/smll.201802086},
journal = {Small},
number = 44,
volume = 14,
place = {United States},
year = {Thu Sep 06 00:00:00 EDT 2018},
month = {Thu Sep 06 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 70 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Imaging Flow Cytometry: Coping with Heterogeneity in Biological Systems
journal, June 2012

  • Barteneva, Natasha S.; Fasler-Kan, Elizaveta; Vorobjev, Ivan A.
  • Journal of Histochemistry & Cytochemistry, Vol. 60, Issue 10
  • DOI: 10.1369/0022155412453052

Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry
journal, May 2014

  • Huo, Shuaidong; Jin, Shubin; Ma, Xiaowei
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn5008572

Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles
journal, May 2008

  • Verma, Ayush; Uzun, Oktay; Hu, Yuhua
  • Nature Materials, Vol. 7, Issue 7
  • DOI: 10.1038/nmat2202

In vitro transformation of plant protoplasts with Ti-plasmid DNA
journal, March 1982

  • Krens, F. A.; Molendijk, L.; Wullems, G. J.
  • Nature, Vol. 296, Issue 5852
  • DOI: 10.1038/296072a0

Synthesis of Water-Soluble Blue Photoluminescent Silicon Nanocrystals with Oxide Surface Passivation
journal, January 2009


Self-Assembly of Lipids and Single-Walled Carbon Nanotubes: Effects of Lipid Structure and PEGylation
journal, April 2012

  • Lee, Hwankyu; Kim, Hyungsu
  • The Journal of Physical Chemistry C, Vol. 116, Issue 16
  • DOI: 10.1021/jp3010663

Biochemical and biophysical properties of thylakoid acyl lipids
journal, October 1991


Carbon Nanotubes as Molecular Transporters for Walled Plant Cells
journal, March 2009

  • Liu, Qiaoling; Chen, Bo; Wang, Qinli
  • Nano Letters, Vol. 9, Issue 3
  • DOI: 10.1021/nl803083u

Electroporation-mediated infection of tobacco leaf protoplasts with tobacco mosaic virus RNA and cucumber mosaic virus RNA
journal, February 1986

  • Nishiguchi, M.; Langridge, W. H. R.; Szalay, A. A.
  • Plant Cell Reports, Vol. 5, Issue 1
  • DOI: 10.1007/BF00269719

Calcium phosphate nanoparticle mediated genetic transformation in plants
journal, January 2012

  • Naqvi, Saba; Maitra, A. N.; Abdin, M. Z.
  • Journal of Materials Chemistry, Vol. 22, Issue 8
  • DOI: 10.1039/c2jm11739h

Translocation of polyarginines and conjugated nanoparticles across asymmetric membranes
journal, January 2013

  • Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang
  • Soft Matter, Vol. 9, Issue 4
  • DOI: 10.1039/C2SM26519B

Designing Nanoparticle Translocation through Membranes by Computer Simulations
journal, January 2012

  • Ding, Hong-ming; Tian, Wen-de; Ma, Yu-qiang
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn2038862

Optical Detection of DNA Conformational Polymorphism on Single-Walled Carbon Nanotubes
journal, January 2006


Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery
journal, October 2004

  • Pantarotto, Davide; Singh, Ravi; McCarthy, David
  • Angewandte Chemie International Edition, Vol. 43, Issue 39
  • DOI: 10.1002/anie.200460437

Plant nanobionic materials with a giant temperature response mediated by pectin-Ca 2+
journal, March 2015

  • Di Giacomo, Raffaele; Daraio, Chiara; Maresca, Bruno
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 15
  • DOI: 10.1073/pnas.1421020112

Free Volume Properties of Sphingomyelin, DMPC, DPPC, and PLPC Bilayers
journal, September 2005

  • Kupiainen, M.; Falck, E.; Ollila, S.
  • Journal of Computational and Theoretical Nanoscience, Vol. 2, Issue 3
  • DOI: 10.1166/jctn.2005.211

Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order
journal, September 2002

  • Harris, Faith M.; Best, Katrina B.; Bell, John D.
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1565, Issue 1
  • DOI: 10.1016/S0005-2736(02)00514-X

Nanoparticle-induced surface reconstruction of phospholipid membranes
journal, November 2008

  • Wang, B.; Zhang, L.; Bae, S. C.
  • Proceedings of the National Academy of Sciences, Vol. 105, Issue 47
  • DOI: 10.1073/pnas.0807296105

Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: a novel mechanism for the introduction of macromolecules into plant cells
journal, August 2004

  • Rosenbluh, Joseph; Singh, Sunil Kumar; Gafni, Yedidya
  • Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1664, Issue 2
  • DOI: 10.1016/j.bbamem.2004.06.003

Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol
journal, June 2007


Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression
journal, March 1994


Coating Single-Walled Carbon Nanotubes with Phospholipids
journal, February 2006

  • Wu, Yonnie; Hudson, JoAn S.; Lu, Qi
  • The Journal of Physical Chemistry B, Vol. 110, Issue 6
  • DOI: 10.1021/jp057252c

Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain
journal, July 2005

  • Bharali, D. J.; Klejbor, I.; Stachowiak, E. K.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 32
  • DOI: 10.1073/pnas.0504926102

A Polyethylene Glycol-Mediated Protoplast Transformation System for Production of Fertile Transgenic Rice Plants
journal, July 1990

  • Hayashimoto, Akio; Li, Zhijian; Murai, Norimoto
  • Plant Physiology, Vol. 93, Issue 3
  • DOI: 10.1104/pp.93.3.857

Molecular biology of the plasma membrane of higher plants.
journal, October 1989


Homogeneous Hydrophobic–Hydrophilic Surface Patterns Enhance Permeation of Nanoparticles through Lipid Membranes
journal, May 2013

  • Gkeka, Paraskevi; Sarkisov, Lev; Angelikopoulos, Panagiotis
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 11
  • DOI: 10.1021/jz400679z

Protein-targeted corona phase molecular recognition
journal, January 2016

  • Bisker, Gili; Dong, Juyao; Park, Hoyoung D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10241

Surface Patterning of Carbon Nanotubes Can Enhance Their Penetration through a Phospholipid Bilayer
journal, January 2011

  • Pogodin, Sergey; Slater, Nigel K. H.; Baulin, Vladimir A.
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn102763b

On The Mechanical and Dynamic Properties of Plant Cell Membranes: Their Role in Growth, Direct Gene Transfer and Protoplast Fusion
journal, January 1993


Bioconjugated Nanoparticles for DNA Protection from Cleavage
journal, June 2003

  • He, Xiao-xiao; Wang, Kemin; Tan, Weihong
  • Journal of the American Chemical Society, Vol. 125, Issue 24
  • DOI: 10.1021/ja034450d

Plant lipids and their role in membrane function
journal, January 1979


Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte
journal, August 2010

  • Guo, Shutao; Huang, Yuanyu; Jiang, Qiao
  • ACS Nano, Vol. 4, Issue 9
  • DOI: 10.1021/nn101638u

Spectroscopy of Single- and Double-Wall Carbon Nanotubes in Different Environments
journal, March 2005

  • Hertel, Tobias; Hagen, Axel; Talalaev, Vadim
  • Nano Letters, Vol. 5, Issue 3
  • DOI: 10.1021/nl050069a

Role of the Plasma Membrane in Freezing Injury and Cold Acclimation
journal, June 1984


Molecular Insight into the Line Tension of Bilayer Membranes Containing Hybrid Polyunsaturated Lipids
journal, February 2017

  • Rosetti, Carla M.; Montich, Guillermo G.; Pastorino, Claudio
  • The Journal of Physical Chemistry B, Vol. 121, Issue 7
  • DOI: 10.1021/acs.jpcb.6b10836

Enhancement of biomolecule transport by electroporation: A review of theory and practical application to transformation ofCorynebacterium glutamicum
journal, January 2006

  • Tryfona, Theodora; Bustard, Mark T.
  • Biotechnology and Bioengineering, Vol. 93, Issue 3
  • DOI: 10.1002/bit.20725

Plant nanobionics approach to augment photosynthesis and biochemical sensing
journal, March 2014

  • Giraldo, Juan Pablo; Landry, Markita P.; Faltermeier, Sean M.
  • Nature Materials, Vol. 13, Issue 4
  • DOI: 10.1038/nmat3890

One Protoplast Is Not the Other!
journal, March 2011

  • Faraco, Marianna; Di Sansebastiano, Gian Pietro; Spelt, Kees
  • Plant Physiology, Vol. 156, Issue 2
  • DOI: 10.1104/pp.111.173708

Debundling of Single-Walled Nanotubes by Dilution:  Observation of Large Populations of Individual Nanotubes in Amide Solvent Dispersions
journal, August 2006

  • Giordani, Silvia; Bergin, Shane D.; Nicolosi, Valeria
  • The Journal of Physical Chemistry B, Vol. 110, Issue 32
  • DOI: 10.1021/jp0626216

Signal Transduction in Maize and Arabidopsis Mesophyll Protoplasts
journal, December 2001


Determination of the Pore Size of Cell Walls of Living Plant Cells
journal, September 1979


Nanoparticle-Induced Permeability of Lipid Membranes
journal, November 2012

  • Pogodin, Sergey; Werner, Marco; Sommer, Jens-Uwe
  • ACS Nano, Vol. 6, Issue 12
  • DOI: 10.1021/nn3028858

Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions)
journal, September 1995

  • Uemura, M.; Joseph, R. A.; Steponkus, P. L.
  • Plant Physiology, Vol. 109, Issue 1
  • DOI: 10.1104/pp.109.1.15

Nanosensor Technology Applied to Living Plant Systems
journal, June 2017


Vehicles and ways for efficient nuclear transformation in plants
journal, November 2010

  • Husaini, Amjad Masood; Abdin, Mallik Zainul; Parray, Ghulam Ahmad
  • GM Crops, Vol. 1, Issue 5
  • DOI: 10.4161/gmcr.1.5.14660

A Nanobionic Light-Emitting Plant
journal, November 2017


Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis
journal, June 2007


Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons
journal, February 2013

  • Lu, Y.; Rijzaani, H.; Karcher, D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 8
  • DOI: 10.1073/pnas.1216898110

Physical Trauma and Tungsten Toxicity Reduce the Efficiency of Biolistic Transformation
journal, March 1992

  • Russell, Julie A.; Roy, Mihir K.; Sanford, John C.
  • Plant Physiology, Vol. 98, Issue 3
  • DOI: 10.1104/pp.98.3.1050

A simple plant gene delivery system using mesoporous silica nanoparticles as carriers
journal, January 2013

  • Chang, Feng-Peng; Kuang, Lin-Yun; Huang, Chia-An
  • Journal of Materials Chemistry B, Vol. 1, Issue 39
  • DOI: 10.1039/c3tb20529k

Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems
journal, June 2014

  • Mu, Qingxin; Jiang, Guibin; Chen, Lingxin
  • Chemical Reviews, Vol. 114, Issue 15
  • DOI: 10.1021/cr400295a

Lipid Exchange Envelope Penetration (LEEP) of Nanoparticles for Plant Engineering: A Universal Localization Mechanism
journal, January 2016


Root Uptake and Phytotoxicity of ZnO Nanoparticles
journal, August 2008

  • Lin, Daohui; Xing, Baoshan
  • Environmental Science & Technology, Vol. 42, Issue 15
  • DOI: 10.1021/es800422x

Polyethylene glycol and electric field treatment of plant protoplasts: characterization of some membrane properties
journal, July 1986


Functional Platform for Controlled Subcellular Distribution of Carbon Nanotubes
journal, October 2011

  • Serag, Maged F.; Kaji, Noritada; Venturelli, Enrica
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn2035654

SoyDB: a knowledge database of soybean transcription factors
journal, January 2010


Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen
journal, January 2017

  • Kottegoda, Nilwala; Sandaruwan, Chanaka; Priyadarshana, Gayan
  • ACS Nano, Vol. 11, Issue 2
  • DOI: 10.1021/acsnano.6b07781

Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy
journal, March 2008


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2002-01-01">January 2002</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wanichapichart, Pikul; Bunthawin, Sarawuth; Kaewpaiboon, Amnuoy</span> </li> <li> ScienceAsia, Vol. 28, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2306/scienceasia1513-1874.2002.28.113" class="text-muted" target="_blank" rel="noopener noreferrer">10.2306/scienceasia1513-1874.2002.28.113<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/nmat4771" target="_blank" rel="noopener noreferrer" class="name">Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2016-10-31">October 2016</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wong, Min Hao; Giraldo, Juan P.; Kwak, Seon-Yeong</span> </li> <li> Nature Materials, Vol. 16, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/nmat4771" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/nmat4771<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.cll.2007.05.008" target="_blank" rel="noopener noreferrer" class="name">Cellular Image Analysis and Imaging by Flow Cytometry<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-09-01">September 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Basiji, David A.; Ortyn, William E.; Liang, Luchuan</span> </li> <li> Clinics in Laboratory Medicine, Vol. 27, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.cll.2007.05.008" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.cll.2007.05.008<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/jp5024026" target="_blank" rel="noopener noreferrer" class="name">Cationic Au Nanoparticle Binding with Plasma Membrane-like Lipid Bilayers: Potential Mechanism for Spontaneous Permeation to Cells Revealed by Atomistic Simulations<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-05-08">May 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Heikkilä, Elena; Martinez-Seara, Hector; Gurtovenko, Andrey A.</span> </li> <li> The Journal of Physical Chemistry C, Vol. 118, Issue 20</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/jp5024026" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/jp5024026<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/78523" target="_blank" rel="noopener noreferrer" class="name">Enhancement of transfection by physical concentration of DNA at the cell surface<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2000-08-01">August 2000</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Luo, Dan; Saltzman, W. Mark</span> </li> <li> Nature Biotechnology, Vol. 18, Issue 8</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/78523" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/78523<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/jp076164k" target="_blank" rel="noopener noreferrer" class="name">Direct Synthesis of Nanoceria in Aqueous Polyhydroxyl Solutions<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-10-10">October 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Karakoti, A. S.; Kuchibhatla, Satyanarayana V. N. T.; Babu, K. Suresh</span> </li> <li> The Journal of Physical Chemistry C, Vol. 111, Issue 46</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/jp076164k" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/jp076164k<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/327070a0" target="_blank" rel="noopener noreferrer" class="name">High-velocity microprojectiles for delivering nucleic acids into living cells<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1987-05-01">May 1987</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Klein, T. M.; Wolf, E. D.; Wu, R.</span> </li> <li> Nature, Vol. 327, Issue 6117, p. 70-73</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/327070a0" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/327070a0<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/nn203892h" target="_blank" rel="noopener noreferrer" class="name">Cellular Uptake of Nanoparticles by Membrane Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-01-17">January 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wang, Tiantian; Bai, Jing; Jiang, Xiue</span> </li> <li> ACS Nano, Vol. 6, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/nn203892h" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/nn203892h<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/S0006-3495(92)81734-4" target="_blank" rel="noopener noreferrer" class="name">Dielectric spectroscopy of plant protoplasts<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1992-12-01">December 1992</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Asami, Koji; Yamaguchi, Tohru</span> </li> <li> Biophysical Journal, Vol. 63, Issue 6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/S0006-3495(92)81734-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/S0006-3495(92)81734-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1073/pnas.82.17.5824" target="_blank" rel="noopener noreferrer" class="name">Expression of genes transferred into monocot and dicot plant cells by electroporation.<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1985-09-01">September 1985</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fromm, M.; Taylor, L. P.; Walbot, V.</span> </li> <li> Proceedings of the National Academy of Sciences, Vol. 82, Issue 17, p. 5824-5828</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1073/pnas.82.17.5824" class="text-muted" target="_blank" rel="noopener noreferrer">10.1073/pnas.82.17.5824<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/BF01870555" target="_blank" rel="noopener noreferrer" class="name">The thickness, composition and structure of some lipid bilayers and natural membranes<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1971-09-01">September 1971</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Fettiplace, R.; Andrews, D. M.; Haydon, D. A.</span> </li> <li> The Journal of Membrane Biology, Vol. 5, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/BF01870555" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/BF01870555<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s11427-012-4422-8" target="_blank" rel="noopener noreferrer" class="name">Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2012-12-20">December 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Xia, Bing; Dong, Chen; Zhang, WenYi</span> </li> <li> Science China Life Sciences, Vol. 56, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s11427-012-4422-8" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s11427-012-4422-8<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s002320010040" target="_blank" rel="noopener noreferrer" class="name">Cell Surface Area Regulation and Membrane Tension<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2001-01-01">January 2001</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Morris, C. E.; Homann, U.</span> </li> <li> The Journal of Membrane Biology, Vol. 179, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s002320010040" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s002320010040<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/BF00015814" target="_blank" rel="noopener noreferrer" class="name">Hybrid genes in the analysis of transformation conditions: I. Setting up a simple method for direct gene transfer in plant protoplasts<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1987-01-01">January 1987</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Negrutiu, I.; Shillito, R.; Potrykus, I.</span> </li> <li> Plant Molecular Biology, Vol. 8, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/BF00015814" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/BF00015814<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.bbamem.2007.10.006" target="_blank" rel="noopener noreferrer" class="name">Laurdan fluorescence spectroscopy in the thylakoid bilayer: The effect of violaxanthin to zeaxanthin conversion on the galactolipid dominated lipid environment<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-01-01">January 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Szilágyi, Anna; Selstam, Eva; Åkerlund, Hans-Erik</span> </li> <li> Biochimica et Biophysica Acta (BBA) - Biomembranes, Vol. 1778, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/j.bbamem.2007.10.006" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/j.bbamem.2007.10.006<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/aenm.201201014" target="_blank" rel="noopener noreferrer" class="name">Application of Nanoparticle Antioxidants to Enable Hyperstable Chloroplasts for Solar Energy Harvesting<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-03-15">March 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Boghossian, Ardemis A.; Sen, Fatih; Gibbons, Brenna M.</span> </li> <li> Advanced Energy Materials, Vol. 3, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/aenm.201201014" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/aenm.201201014<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/BF00027310" target="_blank" rel="noopener noreferrer" class="name">Transient gene expression in electroporated Solanum protoplasts<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1989-11-01">November 1989</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Jones, Heddwyn; Ooms, Gert; Jones, Michael G. K.</span> </li> <li> Plant Molecular Biology, Vol. 13, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/BF00027310" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/BF00027310<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/nnano.2007.108" target="_blank" rel="noopener noreferrer" class="name">Mesoporous silica nanoparticles deliver DNA and chemicals into plants<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2007-04-29">April 2007</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Torney, François; Trewyn, Brian G.; Lin, Victor S. -Y.</span> </li> <li> Nature Nanotechnology, Vol. 2, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/nnano.2007.108" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/nnano.2007.108<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/BF00388219" target="_blank" rel="noopener noreferrer" class="name">Surface charge of protoplasts and their significance in cell-cell interaction<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1978-01-01">January 1978</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Nagata, Toshiyuki; Melchers, Georg</span> </li> <li> Planta, Vol. 142, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/BF00388219" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/BF00388219<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/nn800325a" target="_blank" rel="noopener noreferrer" class="name">Carbon Nanotubes Protect DNA Strands during Cellular Delivery<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2008-10-08">October 2008</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Wu, Yanrong; Phillips, Joseph A.; Liu, Haipeng</span> </li> <li> ACS Nano, Vol. 2, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1021/nn800325a" class="text-muted" target="_blank" rel="noopener noreferrer">10.1021/nn800325a<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.17863/cam.7219" target="_blank" rel="noopener noreferrer" class="name">Urea-Hydroxyapatite Nanohybrids for Slow Release of Nitrogen<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">text</span>, <span class="date" data-date="2017-01-01">January 2017</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kottegoda, N.; Sandaruwan, C.; Priyadarshana, G.</span> </li> <li> Apollo - University of Cambridge Repository</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.17863/cam.7219" class="text-muted" target="_blank" rel="noopener noreferrer">10.17863/cam.7219<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.2307/3868995" target="_blank" rel="noopener noreferrer" class="name">Molecular Biology of the Plasma Membrane of Higher Plants<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1989-10-01">October 1989</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Sussman, Michael R.; Harper, Jeffrey F.</span> </li> <li> The Plant Cell, Vol. 1, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.2307/3868995" class="text-muted" target="_blank" rel="noopener noreferrer">10.2307/3868995<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/ange.200460437" target="_blank" rel="noopener noreferrer" class="name">Functionalized Carbon Nanotubes for Plasmid DNA Gene Delivery<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2004-10-04">October 2004</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Pantarotto, Davide; Singh, Ravi; McCarthy, David</span> </li> <li> Angewandte Chemie, Vol. 116, Issue 39</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/ange.200460437" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/ange.200460437<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.17615/2d36-8h90" target="_blank" rel="noopener noreferrer" class="name">Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">text</span>, <span class="date" data-date="2014-01-01">January 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Qingxin, Mu,; Bing, Yan,; Hongyu, Zhou,</span> </li> <li> The University of North Carolina at Chapel Hill University Libraries</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.17615/2d36-8h90" class="text-muted" target="_blank" rel="noopener noreferrer">10.17615/2d36-8h90<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.48550/arxiv.1202.2314" target="_blank" rel="noopener noreferrer" class="name">Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">text</span>, <span class="date" data-date="2012-01-01">January 2012</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Pogodin, Sergey; Slater, Nigel K. H.; Baulin, Vladimir A.</span> </li> <li> arXiv</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.48550/arxiv.1202.2314" class="text-muted" target="_blank" rel="noopener noreferrer">10.48550/arxiv.1202.2314<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (84)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="text"><span class="fa fa-angle-right"></span> text<small class="text-muted"> (3)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-citations" class="tab-content tab-content-sec osti-curated" data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Works referencing / citing this record:</p> <div class="list"> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1002/admt.201900657" target="_blank" rel="noopener noreferrer" class="name">The Emergence of Plant Nanobionics and Living Plants as Technology<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-11-08">November 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Lew, Tedrick Thomas Salim; Koman, Volodymyr B.; Gordiichuk, Pavlo</span> </li> <li> Advanced Materials Technologies, Vol. 5, Issue 3</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1002/admt.201900657" class="text-muted" target="_blank" rel="noopener noreferrer">10.1002/admt.201900657<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1007/s12274-019-2438-0" target="_blank" rel="noopener noreferrer" class="name">Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-06-11">June 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mouhib, Mohammed; Antonucci, Alessandra; Reggente, Melania</span> </li> <li> Nano Research, Vol. 12, Issue 9</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1007/s12274-019-2438-0" class="text-muted" target="_blank" rel="noopener noreferrer">10.1007/s12274-019-2438-0<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/s41565-019-0375-4" target="_blank" rel="noopener noreferrer" class="name">Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-02-25">February 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kwak, Seon-Yeong; Lew, Tedrick Thomas Salim; Sweeney, Connor J.</span> </li> <li> Nature Nanotechnology, Vol. 14, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/s41565-019-0375-4" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/s41565-019-0375-4<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/s41565-019-0382-5" target="_blank" rel="noopener noreferrer" class="name">High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-02-25">February 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Demirer, Gozde S.; Zhang, Huan; Matos, Juliana L.</span> </li> <li> Nature Nanotechnology, Vol. 14, Issue 5</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1038/s41565-019-0382-5" class="text-muted" target="_blank" rel="noopener noreferrer">10.1038/s41565-019-0382-5<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All Cited By</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (4)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted citation-search"> <label for="citation-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="citation-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="citation-search-sort-name"><label for="citation-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="citation-search-sort-date"><label for="citation-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_citations" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1506633-effect-ceo2-nanomaterial-surface-functional-groups-tissue-subcellular-distribution-ce-tomato-solanum-lycopersicum" itemprop="url">Effect of CeO<sub>2</sub> nanomaterial surface functional groups on tissue and subcellular distribution of Ce in tomato (<em>Solanum lycopersicum</em>)</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Li, Jieran</span> ; <span class="author">Tappero, Ryan V.</span> ; <span class="author">Acerbo, Alvin S.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Environmental Science: Nano</span> </span> </div> <div class="abstract">Using recent advances in X-ray microscopy, this study aimed to elucidate mechanisms of uptake, subcellular distribution, and translocation of functionalized CeO<sub>2</sub> MNM (manufactured nanomaterials), having different charges, by tomato plants (<em>Solanum lycopersicum</em> cv Micro-Tom). As a result, we found that plant growth and Ce concentration in tissues were functions of surface charge and exposure concentration with root to shoot translocation being much greater for negatively charged CeO<sub>2</sub> than positive or neutral CeO<sub>2</sub>. Mechanisms of entry into roots and translocation within plants were examined using X-ray nano- and microprobes. There were dramatic differences in the tissue and subcellular distributions of Ce<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> in plant roots exposed to dextran-coated CeO<sub>2</sub> nanoparticles conjugated with positive, neutral and negative functional groups. Positively charged CeO<sub>2</sub> remained mainly bound to the epidermis of the root with little present in the apoplast or cytoplasm. Negatively charged CeO<sub>2</sub> was found in the cytoplasm throughout the root cross section, and negatively charged CeO<sub>2</sub> was found within the apoplast in the cortex and both the apoplast and the cytoplasm in the vasculature. Neutral CeO<sub>2</sub> likely entered through the gaps between epidermal cells being sloughed off during root growth and penetrated deeper into the interior of the roots (vasculature) via a combination of apoplastic and symplastic transport. Evidence of symplastic Ce transport was observed with the neutrally and negatively charged particles. We observed evidence of endocytosis as the mechanism for entry into the symplast allowing for entry into the xylem. Finally, this study provides critical information on how particle surface chemistry influences the biodistribution and cellular localization of nanomaterials in plants and is to date the highest resolution X-ray imaging of nanomaterials in plant cells.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 31<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1039/C8EN01287C" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1506633" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1039/C8EN01287C</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1506633" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1506633" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1836619-carbon-nanotube-biocompatibility-plants-determined-surface-chemistry" itemprop="url">Carbon nanotube biocompatibility in plants is determined by their surface chemistry</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">González-Grandío, Eduardo</span> ; <span class="author">Demirer, Gözde S.</span> ; <span class="author">Jackson, Christopher T.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Nanobiotechnology</span> </span> </div> <div class="abstract">Abstract Background Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. Results Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. Conclusions While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement. Graphical Abstract</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1186/s12951-021-01178-8" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1836619" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1186/s12951-021-01178-8</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1643174-lights-up-organelles-optogenetic-tools-control-subcellular-structure-organization" itemprop="url">Lights up on organelles: Optogenetic tools to control subcellular structure and organization</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Kichuk, Therese C.</span> ; <span class="author">Carrasco‐López, César</span> ; <span class="author">Avalos, José L.</span> <span class="text-muted pubdata"> - WIREs Mechanisms of Disease</span> </span> </div> <div class="abstract">Abstract Since the neurobiological inception of optogenetics, light‐controlled molecular perturbations have been applied in many scientific disciplines to both manipulate and observe cellular function. Proteins exhibiting light‐sensitive conformational changes provide researchers with avenues for spatiotemporal control over the cellular environment and serve as valuable alternatives to chemically inducible systems. Optogenetic approaches have been developed to target proteins to specific subcellular compartments, allowing for the manipulation of nuclear translocation and plasma membrane morphology. Additionally, these tools have been harnessed for molecular interrogation of organelle function, location, and dynamics. Optogenetic approaches offer novel ways to answer fundamental biological questions and to improve<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the efficiency of bioengineered cell factories by controlling the assembly of synthetic organelles. This review first provides a summary of available optogenetic systems with an emphasis on their organelle‐specific utility. It then explores the strategies employed for organelle targeting and concludes by discussing our perspective on the future of optogenetics to control subcellular structure and organization. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 13<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1002/wsbm.1500" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1643174" data-product-type="Journal Article" data-product-subtype="PM" >https://doi.org/10.1002/wsbm.1500</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/5840280-effects-freezing-cold-acclimation-plasma-membrane-isolated-protoplasts" itemprop="url">Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Technical Report</small><span class="authors"> <span class="author">Steponkus, P L</span> <span class="text-muted pubdata"></span> </span> </div> <div class="abstract">The principal goal of our program is to provide a mechanistic understanding of the cellular and molecular aspects of freezing injury and cold acclimation from a perspective of the structural and functional integrity of the plasma membrane -- the primary site of freezing injury in winter cereals. Our immediate goals are (1) to provide an understanding of the mechanism by which freeze-induced dehydration affects the formation of aparticulate domains and lamellar-to-hexagonal{sub {parallel}} phase transitions in the plasma membrane of NA protoplasts, (2) to characterize the cellular and molecular mechanisms by which cold acclimation and cryoprotectants preclude or diminish these alterations<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> in the plasma membrane of ACC protoplasts and (3) to elucidate the molecular basis for the lesion that limits the maximum freezing tolerance of cold-acclimated winter rye and which is believed to be the formation of domains of interdigitated lipids in the L{sub {beta}} phase. This past year our efforts have included (a) characterization of the ultrastructural changes in the plasma membrane that are associated with freezing injury of protoplasts isolated from cold-acclimated rye leaves; (b) determinations of the hydration characteristics of plasma membrane lipids and model lipid mixtures, including the thermal dependence of the hydration characteristics; (c) studies of dehydration-induced phase transitions and demixing in model systems of plasma membrane lipids; (d) differential scanning calorimetry studies to determine the amount of freezable/unfreezable water that is associated with lipids; and (e) preliminary cryo-SEM observations of in situ ice formation in rye leaves. 11 refs.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1987891-engineering-characterization-carbohydratebinding-modules-imaging-cellulose-fibrils-biosynthesis-plant-protoplasts" itemprop="url">Engineering and characterization of carbohydrate‐binding modules for imaging cellulose fibrils biosynthesis in plant protoplasts</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Jayachandran, Dharanidaran</span> ; <span class="author">Smith, Peter</span> ; <span class="author">Irfan, Mohammad</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Biotechnology and Bioengineering</span> </span> </div> <div class="abstract">Abstract Carbohydrate binding modules (CBMs) are noncatalytic domains that assist tethered catalytic domains in substrate targeting. CBMs have therefore been used to visualize distinct polysaccharides present in the cell wall of plant cells and tissues. However, most previous studies provide a qualitative analysis of CBM‐polysaccharide interactions, with limited characterization of engineered tandem CBM designs for recognizing polysaccharides like cellulose and limited application of CBM‐based probes to visualize cellulose fibrils synthesis in model plant protoplasts with regenerating cell walls. Here, we examine the dynamic interactions of engineered type‐A CBMs from families 3a and 64 with crystalline cellulose‐I and phosphoric acid swollen<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> cellulose. We generated tandem CBM designs to determine various characteristic properties including binding reversibility toward cellulose‐I using equilibrium binding assays. To compute the adsorption ( nk <sub>on</sub> ) and desorption ( k <sub>off</sub> ) rate constants of single versus tandem CBM designs toward nanocrystalline cellulose, we employed dynamic kinetic binding assays using quartz crystal microbalance with dissipation. Our results indicate that tandem CBM3a exhibited the highest adsorption rate to cellulose and displayed reversible binding to both crystalline/amorphous cellulose, unlike other CBM designs, making tandem CBM3a better suited for live plant cell wall biosynthesis imaging applications. We used several engineered CBMs to visualize Arabidopsis thaliana protoplasts with regenerated cell walls using confocal laser scanning microscopy and wide‐field fluorescence microscopy. Lastly, we also demonstrated how CBMs as probe reagents can enable in situ visualization of cellulose fibrils during cell wall regeneration in Arabidopsis protoplasts.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1002/bit.28484" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1987891" data-product-type="Journal Article" data-product-subtype="PA" >https://doi.org/10.1002/bit.28484</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>