Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys
- Ohio Univ., Athens, OH (United States)
- Stanford Univ., Stanford, CA (United States); SLAC and Stanford Univ., Menlo Park, CA (United States)
- Univ. of California, Berkeley, CA (United States)
- Institute for Advanced Study, Princeton, NJ (United States)
- Univ. of Portsmouth, Portsmouth (United Kingdom); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Future Baryon Acoustic Oscillation surveys aim at observing galaxy clustering over a wide range of redshift and galaxy populations at great precision, reaching tenths of a percent, in order to detect any deviation of dark energy from the lambda cold dark matter ( ΛCDM ) model. We utilize a set of paired quasi-N-body FastPM simulations that were designed to mitigate the sample variance effect on the BAO feature and evaluated the BAO systematics as precisely as ~0.01 percent. We report anisotropic BAO scale shifts before and after density field reconstruction in the presence of redshift-space distortions over a wide range of redshift, galaxy/halo biases, and shot noise levels. We test different reconstruction schemes and different smoothing filter scales, and introduce physically motivated BAO fitting models. For the first time, we derive a Galilean-invariant infrared resummed model for halos in real and redshift space. We test these models from the perspective of robust BAO measurements and non-BAO information such as growth rate and non-linear bias. We find that pre-reconstruction BAO scale has moderate fitting-model dependence at the level of 0.1–0.2 percent for matter while the dependence is substantially reduced to less than 0.07 percent for halos. We find that post-reconstruction BAO shifts are generally reduced to below 0.1 percent in the presence of galaxy/halo bias and show much smaller fitting model dependence. Different reconstruction conventions can potentially make a much larger difference on the line-of-sight BAO scale, upto 0.3 percent. Furthermore, the precision (error) of the BAO measurements is quite consistent regardless of the choice of the fitting model or reconstruction convention.
- Research Organization:
- SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-76SF00515
- OSTI ID:
- 1468944
- Journal Information:
- Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 1; ISSN 0035-8711
- Publisher:
- Royal Astronomical SocietyCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Geometric and dynamic distortions in anisotropic galaxy clustering
Suppressing the Sample Variance of DESI-Like Galaxy Clustering with Fast Simulations