skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations

Abstract

Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qualitatively accounts for electron observations near the equatorial plane and at higher latitudes. In conjunction with the highly field-aligned plateaus, loss cone features are also evident, which result from the action of the upward-directed wave parallel electric field on the untrapped electron populations.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2];  [3]
  1. Univ. of Alaska, Fairbanks, AK (United States). Geophysical Inst.; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Univ. of California, Berkeley, CA (United States). Space Sciences Lab.
  3. Andrews Univ., Berrien Springs, MI (United States). Dept. of Engineering and Computer Science
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); National Aeronautic and Space Administration (NASA)
OSTI Identifier:
1468802
Grant/Contract Number:  
NNH16AC43I; NNX16AR10G; NNH14AY20I; NNX15AF57G; NNX12AD24G; AGS1203299; AGS1405225; AGS1602972; AGS1602941
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 45; Journal Issue: 12; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 42 ENGINEERING

Citation Formats

Damiano, P. A., Chaston, C. C., Hull, A. J., and Johnson, J. R. Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations. United States: N. p., 2018. Web. doi:10.1029/2018gl077748.
Damiano, P. A., Chaston, C. C., Hull, A. J., & Johnson, J. R. Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations. United States. doi:https://doi.org/10.1029/2018gl077748
Damiano, P. A., Chaston, C. C., Hull, A. J., and Johnson, J. R. Thu . "Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations". United States. doi:https://doi.org/10.1029/2018gl077748. https://www.osti.gov/servlets/purl/1468802.
@article{osti_1468802,
title = {Electron Distributions in Kinetic Scale Field Line Resonances: A Comparison of Simulations and Observations},
author = {Damiano, P. A. and Chaston, C. C. and Hull, A. J. and Johnson, J. R.},
abstractNote = {Observations in kinetic scale field line resonances, or eigenmodes of the geomagnetic field, reveal highly field-aligned plateaued electron distributions. By combining observations from the Van Allen Probes and Cluster spacecraft with a hybrid kinetic gyrofluid simulation we show how these distributions arise from the nonlocal self-consistent interaction of electrons with the wavefield. This interaction is manifested as electron trapping in the standing wave potential. The process operates along most of the field line and qualitatively accounts for electron observations near the equatorial plane and at higher latitudes. In conjunction with the highly field-aligned plateaus, loss cone features are also evident, which result from the action of the upward-directed wave parallel electric field on the untrapped electron populations.},
doi = {10.1029/2018gl077748},
journal = {Geophysical Research Letters},
number = 12,
volume = 45,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electron Trapping in Shear Alfvén Waves that Power the Aurora
journal, January 2009


Simulations of Driven Field Line Resonances in the Earth’s Magnetosphere
journal, January 1993

  • Rankin, R.; Samson, J. C.; Frycz, P.
  • Journal of Geophysical Research, Vol. 98, Issue A12
  • DOI: 10.1029/93JA02083

Electron inertial effects on geomagnetic field line resonances
journal, January 1994

  • Wei, C. Q.; Samson, J. C.; Rankin, R.
  • Journal of Geophysical Research, Vol. 99, Issue A6
  • DOI: 10.1029/94JA00582

On the kinetic dispersion relation for shear Alfvén waves
journal, March 1996

  • Lysak, Robert L.; Lotko, William
  • Journal of Geophysical Research: Space Physics, Vol. 101, Issue A3
  • DOI: 10.1029/95JA03712

Dispersive field line resonances on auroral field lines
journal, January 1995

  • Streltsov, A.; Lotko, W.
  • Journal of Geophysical Research, Vol. 100, Issue A10
  • DOI: 10.1029/95JA01553

Radial transport of radiation belt electrons in kinetic field-line resonances: Alfvénic Radiation Belt Transport
journal, August 2017

  • Chaston, C. C.; Bonnell, J. W.; Wygant, J. R.
  • Geophysical Research Letters, Vol. 44, Issue 16
  • DOI: 10.1002/2017GL074587

Electron acceleration in a geomagnetic Field Line Resonance: MIRROR FORCE EFFECTS WITHIN FLRS
journal, January 2012

  • Damiano, P. A.; Johnson, J. R.
  • Geophysical Research Letters, Vol. 39, Issue 2
  • DOI: 10.1029/2011GL050264

Optical signatures of auroral arcs produced by field line resonances: comparison with satellite observations and modeling
journal, January 2003


Self-consistent wave-particle interactions in dispersive scale long-period field-line-resonances: WAVE PARTICLE INTERACTIONS IN ALFVÉN WAVES
journal, December 2007

  • Rankin, R.; Watt, C. E. J.; Samson, J. C.
  • Geophysical Research Letters, Vol. 34, Issue 23
  • DOI: 10.1029/2007GL031317

A kinetic-fluid model
journal, January 1999

  • Cheng, C. Z.; Johnson, Jay R.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A1
  • DOI: 10.1029/1998JA900065

Kinetic effects in the acceleration of auroral electrons in small scale Alfven waves: A FAST case study: KINETIC ELECTRON ACCELERATION
journal, March 2003

  • Chaston, C. C.; Bonnell, J. W.; Carlson, C. W.
  • Geophysical Research Letters, Vol. 30, Issue 6
  • DOI: 10.1029/2002GL015777

Hybrid magnetohydrodynamic–kinetic model of standing shear Alfvén waves
journal, July 2003


Nonlinear standing shear Alfvén waves in the Earth's magnetosphere
journal, January 1994

  • Rankin, R.; Frycz, P.; Tikhonchuk, V. T.
  • Journal of Geophysical Research, Vol. 99, Issue A11
  • DOI: 10.1029/94JA01629

Relationship of the Van Allen radiation belts to solar wind drivers
journal, March 2008

  • Hudson, Mary K.; Kress, Brian T.; Mueller, Hans-R.
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 70, Issue 5
  • DOI: 10.1016/j.jastp.2007.11.003

Evidence for kinetic Alfvén waves and parallel electron energization at 4-6 R E altitudes in the plasma sheet boundary layer : KINETIC ALFVÉN WAVES AT THE PSBL
journal, August 2002

  • Wygant, J. R.; Keiling, A.; Cattell, C. A.
  • Journal of Geophysical Research: Space Physics, Vol. 107, Issue A8
  • DOI: 10.1029/2001JA900113

Electron thermal effects in standing shear Alfvén waves: ELECTRON ACCELERATION IN FLRS
journal, September 2008

  • Damiano, P. A.; Wright, A. N.
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A9
  • DOI: 10.1029/2008JA013087

Observations of kinetic scale field line resonances
journal, January 2014

  • Chaston, Christopher C.; Bonnell, John W.; Wygant, John R.
  • Geophysical Research Letters, Vol. 41, Issue 2
  • DOI: 10.1002/2013GL058507

Small-scale, dispersive field line resonances in the hot magnetospheric plasma
journal, November 1998

  • Streltsov, A. V.; Lotko, W.; Johnson, J. R.
  • Journal of Geophysical Research: Space Physics, Vol. 103, Issue A11
  • DOI: 10.1029/98JA02679

Nonlinear shear Alfvén resonances in a dipolar magnetic field
journal, December 1997

  • Voronkov, I.; Rankin, R.; Tikhonchuk, V. T.
  • Journal of Geophysical Research: Space Physics, Vol. 102, Issue A12
  • DOI: 10.1029/97JA02533

Discrete auroral arc, electrostatic shock and suprathermal electrons powered by dispersive, anomalously resistive field line resonance
journal, December 1998

  • Lotko, W.; Streltsov, A. V.; Carlson, C. W.
  • Geophysical Research Letters, Vol. 25, Issue 24
  • DOI: 10.1029/1998GL900200

Dispersive, nonradiative field line resonances in a dipolar magnetic field geometry
journal, December 1997

  • Streltsov, A. V.; Lotko, W.
  • Journal of Geophysical Research: Space Physics, Vol. 102, Issue A12
  • DOI: 10.1029/97JA02530

Energy dissipation via electron energization in standing shear Alfvén waves
journal, June 2007

  • Damiano, P. A.; Wright, A. N.; Sydora, R. D.
  • Physics of Plasmas, Vol. 14, Issue 6
  • DOI: 10.1063/1.2744226

FAST Observations of Inertial Alfven Waves in the Dayside Aurora
journal, March 1999

  • Chaston, C. C.; Carlson, C. W.; Peria, W. J.
  • Geophysical Research Letters, Vol. 26, Issue 6
  • DOI: 10.1029/1998GL900246

Alfvén resonance excitation and fast wave propagation in magnetospheric waveguides
journal, January 1994

  • Rickard, Graham J.; Wright, Andrew N.
  • Journal of Geophysical Research, Vol. 99, Issue A7
  • DOI: 10.1029/94JA00674

Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere: Alfvén Wave Ion Accelerator
journal, December 2015

  • Chaston, C. C.; Bonnell, J. W.; Wygant, J. R.
  • Geophysical Research Letters, Vol. 42, Issue 24
  • DOI: 10.1002/2015GL066674

Kinetic processes in plasma heating by resonant mode conversion of Alfvén wave
journal, January 1976

  • Hasegawa, Akira; Chen, Liu
  • Physics of Fluids, Vol. 19, Issue 12
  • DOI: 10.1063/1.861427

Observations of optical aurora modulated by resonant Alfvén waves
journal, January 1993

  • Xu, B. -L.; Samson, J. C.; Liu, W. W.
  • Journal of Geophysical Research, Vol. 98, Issue A7
  • DOI: 10.1029/93JA00435

Bulk plasma properties at geosynchronous orbit
journal, January 2005


Parallel electric field of a mirror kinetic Alfvén wave
journal, May 2000

  • Nakamura, Tadas K.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A5
  • DOI: 10.1029/1999JA900494

Hybrid magnetohydrodynamic-kinetic electron closure methods and shear Alfvén waves in nonuniform plasmas
journal, April 2005

  • Damiano, P. A.; Wright, A. N.; Sydora, R. D.
  • Physics of Plasmas, Vol. 12, Issue 4
  • DOI: 10.1063/1.1862627

Accurate approximate formulae for toroidal standing hydromagnetic oscillations in a dipolar geomagnetic field
journal, September 1984


Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations: ULF PULSATIONS DRIVEN BY DYNAMIC PRESSURE
journal, November 2010

  • Claudepierre, S. G.; Hudson, M. K.; Lotko, W.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A11
  • DOI: 10.1029/2010JA015399

    Works referencing / citing this record:

    Kinetic Simulations of Electron Acceleration by Dispersive Scale Alfvén Waves in Jupiter's Magnetosphere
    journal, March 2019

    • Damiano, P. A.; Delamere, P. A.; Stauffer, B.
    • Geophysical Research Letters, Vol. 46, Issue 6
    • DOI: 10.1029/2018gl081219

    Periodic Excitation of Chorus and ECH Waves Modulated by Ultralow Frequency Compressions
    journal, November 2019

    • Zhang, Xiao‐Jia; Chen, Lunjin; Artemyev, Anton V.
    • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 11
    • DOI: 10.1029/2019ja027201