An effective formalism for testing extensions to General Relativity with gravitational waves
- Stanford Univ., CA (United States). Stanford Inst. for Theoretical Physics
The recent direct observation of gravitational waves (GW) from merging black holes opens up the possibility of exploring the theory of gravity in the strong regime at an unprecedented level. It is therefore interesting to explore which extensions to General Relativity (GR) could be detected. We construct an Effective Field Theory (EFT) satisfying the following requirements. It is testable with GW observations; it is consistent with other experiments, including short distance tests of GR; it agrees with widely accepted principles of physics, such as locality, causality and unitarity; and it does not involve new light degrees of freedom. The most general theory satisfying these requirements corresponds to adding to the GR Lagrangian operators constructed out of powers of the Riemann tensor, suppressed by a scale comparable to the curvature of the observed merging binaries. The presence of these operators modifies the gravitational potential between the compact objects, as well as their effective mass and current quadrupoles, ultimately correcting the waveform of the emitted GW.
- Research Organization:
- Stanford Univ., CA (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC)
- Grant/Contract Number:
- SC0008078
- OSTI ID:
- 1468796
- Journal Information:
- Journal of High Energy Physics (Online), Vol. 2017, Issue 9; ISSN 1029-8479
- Publisher:
- Springer BerlinCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Gravitational radiative corrections from effective field theory
Phase effects from strong gravitational lensing of gravitational waves