skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wang–Landau approach to the simulation of water clusters

Abstract

The Wang–Landau Monte Carlo method [Wang FG, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050-2053; Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101] has been established as an effective computational approach for studying complex systems. In this study, we review the properties of 6 popular empirical water potentials, including a recently proposed explicit 3-body potential, obtained by applying the Wang–Landau method to the simulation of water clusters. Finally, comparing to numerous classical and first principle calculations, we show that several classical water models can provide a consistent description of the structural and thermodynamical properties of water clusters partially in agreement of ab initio results, although they were designed to reproduce macroscopic properties of water at ambient conditions.

Authors:
 [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  2. Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1468154
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Molecular Simulation
Additional Journal Information:
Journal Volume: 45; Journal Issue: 4-5; Journal ID: ISSN 0892-7022
Publisher:
Taylor & Francis
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; Wang-Landau method; water cluster; ground state structure; phase transition

Citation Formats

Yin, Junqi, and Landau, David P. Wang–Landau approach to the simulation of water clusters. United States: N. p., 2018. Web. doi:10.1080/08927022.2018.1506119.
Yin, Junqi, & Landau, David P. Wang–Landau approach to the simulation of water clusters. United States. doi:10.1080/08927022.2018.1506119.
Yin, Junqi, and Landau, David P. Wed . "Wang–Landau approach to the simulation of water clusters". United States. doi:10.1080/08927022.2018.1506119. https://www.osti.gov/servlets/purl/1468154.
@article{osti_1468154,
title = {Wang–Landau approach to the simulation of water clusters},
author = {Yin, Junqi and Landau, David P.},
abstractNote = {The Wang–Landau Monte Carlo method [Wang FG, Landau DP. Efficient, multiple-range random walk algorithm to calculate the density of states. Phys Rev Lett. 2001;86:2050-2053; Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101] has been established as an effective computational approach for studying complex systems. In this study, we review the properties of 6 popular empirical water potentials, including a recently proposed explicit 3-body potential, obtained by applying the Wang–Landau method to the simulation of water clusters. Finally, comparing to numerous classical and first principle calculations, we show that several classical water models can provide a consistent description of the structural and thermodynamical properties of water clusters partially in agreement of ab initio results, although they were designed to reproduce macroscopic properties of water at ambient conditions.},
doi = {10.1080/08927022.2018.1506119},
journal = {Molecular Simulation},
number = 4-5,
volume = 45,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Global minima of water clusters (H2O)n, n≤21, described by an empirical potential
journal, April 1998


Phase coexistence properties of polarizable water models
journal, August 1998

  • Kiyohara, Kenji; Gubbins, Keith; Panagiotopoulos, Athanassios
  • Molecular Physics, Vol. 94, Issue 5
  • DOI: 10.1080/00268979809482372

Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
journal, April 2015

  • Zen, Andrea; Luo, Ye; Mazzola, Guglielmo
  • The Journal of Chemical Physics, Vol. 142, Issue 14
  • DOI: 10.1063/1.4917171

Enumeration and Evaluation of the Water Hexamer Cage Structure
journal, February 2000

  • Tissandier, Michael D.; Singer, Sherwin J.; Coe, James V.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 4
  • DOI: 10.1021/jp992711t

The Water Hexamer: Cage, Prism, or Both. Full Dimensional Quantum Simulations Say Both
journal, June 2012

  • Wang, Yimin; Babin, Volodymyr; Bowman, Joel M.
  • Journal of the American Chemical Society, Vol. 134, Issue 27
  • DOI: 10.1021/ja304528m

Structure of Water Clusters. The Contribution of Many-Body Forces, Monomer Relaxation, and Vibrational Zero-Point Energy
journal, January 1996

  • Gregory, Jonathon K.; Clary, David C.
  • The Journal of Physical Chemistry, Vol. 100, Issue 46
  • DOI: 10.1021/jp9616019

Structural properties and thermodynamics of water clusters: A Wang–Landau study
journal, February 2011

  • Yin, Junqi; Landau, D. P.
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3555761

Molecular dynamics, Langevin and hydrid Monte Carlo simulations in a multicanonical ensemble
journal, September 1996


Temperature and size dependence for Monte Carlo simulations of TIP4P water
journal, December 1985


The water hexamer: Three-body interactions, structures, energetics, and OH-stretch spectroscopy at finite temperature
journal, September 2012

  • Tainter, C. J.; Skinner, J. L.
  • The Journal of Chemical Physics, Vol. 137, Issue 10
  • DOI: 10.1063/1.4746157

Ab Initio Study of Ionized Water Radical Cation (H 2 O) 8 + in Combination with the Particle Swarm Optimization Method
journal, November 2016

  • Tang, Mei; Hu, Cui-E; Lv, Zhen-Long
  • The Journal of Physical Chemistry A, Vol. 120, Issue 47
  • DOI: 10.1021/acs.jpca.6b09866

Size-Dependent Phase Changes in Water Clusters
journal, August 2011

  • Kaneko, Toshihiro; Akimoto, Takuma; Yasuoka, Kenji
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 10
  • DOI: 10.1021/ct200458m

Reparametrized E3B (Explicit Three-Body) Water Model Using the TIP4P/2005 Model as a Reference
journal, April 2015

  • Tainter, Craig J.; Shi, Liang; Skinner, James L.
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 5
  • DOI: 10.1021/acs.jctc.5b00117

Development of an Efficient Geometry Optimization Method for Water Clusters
journal, November 2008

  • Takeuchi, Hiroshi
  • Journal of Chemical Information and Modeling, Vol. 48, Issue 11
  • DOI: 10.1021/ci800238w

Facilitating Minima Search for Large Water Clusters at the MP2 Level via Molecular Tailoring
journal, August 2012

  • Furtado, Jonathan P.; Rahalkar, Anuja P.; Shanker, Sudhanshu
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 16
  • DOI: 10.1021/jz300663u

Comparison of the Melting Temperatures of Classical and Quantum Water Potential Models
journal, August 2017


Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Parallel-Tempering Monte Carlo Study of (H 2 O) n = 6 - 9
journal, September 2003

  • Tharrington, Arnold N.; Jordan, Kenneth D.
  • The Journal of Physical Chemistry A, Vol. 107, Issue 38
  • DOI: 10.1021/jp030355f

Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H 2 O) n , n = 2–6, and several hexamer local minima at the CCSD(T) level of theory
journal, September 2013

  • Miliordos, Evangelos; Aprà, Edoardo; Xantheas, Sotiris S.
  • The Journal of Chemical Physics, Vol. 139, Issue 11
  • DOI: 10.1063/1.4820448

Monte Carlo simulation of (H 2 O) 8 : Evidence for a low‐energy S 4 structure and characterization of the solid ↔ liquid transition
journal, September 1991

  • Tsai, C. J.; Jordan, K. D.
  • The Journal of Chemical Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.460788

Molecular Dynamics Simulations of Water with Novel Shell-Model Potentials
journal, April 2001

  • van Maaren, Paul J.; van der Spoel, David
  • The Journal of Physical Chemistry B, Vol. 105, Issue 13
  • DOI: 10.1021/jp003843l

A general purpose model for the condensed phases of water: TIP4P/2005
journal, December 2005

  • Abascal, J. L. F.; Vega, C.
  • The Journal of Chemical Physics, Vol. 123, Issue 23
  • DOI: 10.1063/1.2121687

Phase transitions in free water nanoparticles. Theoretical modeling of [H 2 O] 48 and [H 2 O] 118
journal, January 2015

  • Vítek, Aleš; Kalus, René
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 16
  • DOI: 10.1039/C4CP04909H

Global Minima of Water Clusters (H 2 O) N , N ≤ 25, Described by Three Empirical Potentials
journal, April 2003

  • Kabrede, H.; Hentschke, R.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 16
  • DOI: 10.1021/jp027783q

Kinetics and Mechanism of Water Cluster Equilibria
journal, January 2014

  • Weinhold, F.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 28
  • DOI: 10.1021/jp411475s

Ab initio study of cationic water cluster (H 2 O) 9 + via particle swarm optimization algorithm
journal, November 2017


Using vibrational modes in the search for global minima of atomic and molecular clusters
journal, October 2006


Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model
journal, February 2001

  • Rick, Steven W.
  • The Journal of Chemical Physics, Vol. 114, Issue 5
  • DOI: 10.1063/1.1336805

Generic, Hierarchical Framework for Massively Parallel Wang-Landau Sampling
journal, May 2013


Applications of Wang-Landau sampling to determine phase equilibria in complex fluids
journal, October 2007

  • Ganzenmüller, Georg; Camp, Philip J.
  • The Journal of Chemical Physics, Vol. 127, Issue 15
  • DOI: 10.1063/1.2794042

Incorporating configurational-bias Monte Carlo into the Wang-Landau algorithm for continuous molecular systems
journal, November 2012

  • Maerzke, Katie A.; Gai, Lili; Cummings, Peter T.
  • The Journal of Chemical Physics, Vol. 137, Issue 20
  • DOI: 10.1063/1.4766354

Melting behavior of the (H2O)6 and (H2O)8 clusters
journal, December 1998


Clusters of classical water models
journal, November 2009

  • Kiss, Péter T.; Baranyai, András
  • The Journal of Chemical Physics, Vol. 131, Issue 20
  • DOI: 10.1063/1.3266838

Ab initio investigation of possible candidate structures and properties of water cluster (H2O)7+ via particle swarm optimization method
journal, January 2017


From dimer to condensed phases at extreme conditions: Accurate predictions of the properties of water by a Gaussian charge polarizable model
journal, June 2005

  • Paricaud, Patrice; Předota, Milan; Chialvo, Ariel A.
  • The Journal of Chemical Physics, Vol. 122, Issue 24
  • DOI: 10.1063/1.1940033

Structure and Stability of Water Clusters (H 2 O) n , n = 8−20:  An Ab Initio Investigation
journal, November 2001

  • Maheshwary, Shruti; Patel, Nitin; Sathyamurthy, Narayanasami
  • The Journal of Physical Chemistry A, Vol. 105, Issue 46
  • DOI: 10.1021/jp013141b

The missing term in effective pair potentials
journal, November 1987

  • Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P.
  • The Journal of Physical Chemistry, Vol. 91, Issue 24
  • DOI: 10.1021/j100308a038

Two-dimensional multiple-histogram method applied to isothermal–isobaric Monte Carlo simulations of molecular clusters
journal, June 2014