skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Trace Analysis and Reaction Monitoring by Nanophotonic Ionization Mass Spectrometry from Elevated Bowtie and Silicon Nanopost Arrays

Abstract

We present that silicon nanopost arrays (NAPA) are used in trace analysis by mass spectrometry (MS) because they enable highly efficient ion production from small molecules and thin tissue sections by UV laser desorption ionization (LDI). Such nanophotonic ionization of adsorbates relies on localized interactions between a nanostructured substrate and laser radiation. In LDI from NAPA, only the component of the oscillating electric field vector that is parallel with the posts couples the laser energy into the nanostructure. Enhancements in control over adsorbate ionization and fragmentation are expected if the surface-parallel component can also interact with the nanostructure. Here, an alternative nanophotonic ionization platform is introduced for LDI-MS, the elevated bowtie (EBT) array by adding triangular chromium features on top of silicon post pairs to form bowties. Compared to NAPA, the threshold fluence for ionization from EBT is lower, and at low laser fluences the ionization efficiency is increased by a factor of ≈17. The EBT platform with optimized apex angle exhibits a higher survival yield for molecular ions produced from biomolecules and xenobiotics and allows more control over fragmentation by adjusting the fluence. Finally, these unique nanophotonic ionization attributes are utilized for trace analysis and reaction monitoring in complexmore » biological samples.« less

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [2]; ORCiD logo [1]
  1. George Washington Univ., Washington, DC (United States). Department of Chemistry
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS) and Biosciences Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division; USDOE
OSTI Identifier:
1468089
Alternate Identifier(s):
OSTI ID: 1438491
Grant/Contract Number:  
AC05-00OR22725; FG02-01ER15129; W911NF-14-2-0020; CNMS2013-309
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 28; Journal Issue: 29; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; bowtie arrays; laser desorption; mass spectrometry; nanophotonic ionization; nanopost arrays

Citation Formats

A. Stopka, Sylwia, A. Holmes, Xavier, Korte, Andrew R., R. Compton, Laine, Retterer, Scott T., and Vertes, Akos. Trace Analysis and Reaction Monitoring by Nanophotonic Ionization Mass Spectrometry from Elevated Bowtie and Silicon Nanopost Arrays. United States: N. p., 2018. Web. doi:10.1002/adfm.201801730.
A. Stopka, Sylwia, A. Holmes, Xavier, Korte, Andrew R., R. Compton, Laine, Retterer, Scott T., & Vertes, Akos. Trace Analysis and Reaction Monitoring by Nanophotonic Ionization Mass Spectrometry from Elevated Bowtie and Silicon Nanopost Arrays. United States. doi:10.1002/adfm.201801730.
A. Stopka, Sylwia, A. Holmes, Xavier, Korte, Andrew R., R. Compton, Laine, Retterer, Scott T., and Vertes, Akos. Tue . "Trace Analysis and Reaction Monitoring by Nanophotonic Ionization Mass Spectrometry from Elevated Bowtie and Silicon Nanopost Arrays". United States. doi:10.1002/adfm.201801730. https://www.osti.gov/servlets/purl/1468089.
@article{osti_1468089,
title = {Trace Analysis and Reaction Monitoring by Nanophotonic Ionization Mass Spectrometry from Elevated Bowtie and Silicon Nanopost Arrays},
author = {A. Stopka, Sylwia and A. Holmes, Xavier and Korte, Andrew R. and R. Compton, Laine and Retterer, Scott T. and Vertes, Akos},
abstractNote = {We present that silicon nanopost arrays (NAPA) are used in trace analysis by mass spectrometry (MS) because they enable highly efficient ion production from small molecules and thin tissue sections by UV laser desorption ionization (LDI). Such nanophotonic ionization of adsorbates relies on localized interactions between a nanostructured substrate and laser radiation. In LDI from NAPA, only the component of the oscillating electric field vector that is parallel with the posts couples the laser energy into the nanostructure. Enhancements in control over adsorbate ionization and fragmentation are expected if the surface-parallel component can also interact with the nanostructure. Here, an alternative nanophotonic ionization platform is introduced for LDI-MS, the elevated bowtie (EBT) array by adding triangular chromium features on top of silicon post pairs to form bowties. Compared to NAPA, the threshold fluence for ionization from EBT is lower, and at low laser fluences the ionization efficiency is increased by a factor of ≈17. The EBT platform with optimized apex angle exhibits a higher survival yield for molecular ions produced from biomolecules and xenobiotics and allows more control over fragmentation by adjusting the fluence. Finally, these unique nanophotonic ionization attributes are utilized for trace analysis and reaction monitoring in complex biological samples.},
doi = {10.1002/adfm.201801730},
journal = {Advanced Functional Materials},
number = 29,
volume = 28,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Figure S1 Figure S1: Verapamil mass spectra corresponding to Figure 2a for the 60° EBT and NAPA at 4 and 8 mJ/cm2 laser fluences. Molecular ion peak was detected in the protonated form at $m/z$ 455.2898, and two fragments were observed at $m/z$ 303.2062 and $m/z$ 165.0905 (see insets for experimental isotopicmore » patterns for these ions compared to the calculated centroid positions indicated by the black squares). The 60° EBT and NAPA nanostructures exhibited ionization thresholds of 4 mJ/cm2 and 8 mJ/cm2, respectively. Both structures induced higher fragmentation with increasing laser fluence. Additional fragmentation was observed on 60° EBT at 8 mJ/cm2, where sample related fragments appeared at $m/z$ 453.2745 and $m/z$ 304.2992.« less

Save / Share:

Works referenced in this record:

Matrix-free and material-enhanced laser desorption/ionization mass spectrometry for the analysis of low molecular weight compounds
journal, September 2010

  • Rainer, Matthias; Qureshi, Muhammad Nasimullah; Bonn, Günther Karl
  • Analytical and Bioanalytical Chemistry, Vol. 400, Issue 8
  • DOI: 10.1007/s00216-010-4138-1

Molecular fluorescence in the vicinity of a nanoscopic probe
journal, May 2001

  • Hamann, H. F.; Kuno, M.; Gallagher, A.
  • The Journal of Chemical Physics, Vol. 114, Issue 19
  • DOI: 10.1063/1.1365931

The Matrix Suppression Effect and Ionization Mechanisms in Matrix-assisted Laser Desorption/Ionization
journal, June 1996


Near-Field Optics: Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit
journal, July 1992


Nanostructured Indium Tin Oxide Slides for Small-Molecule Profiling and Imaging Mass Spectrometry of Metabolites by Surface-Assisted Laser Desorption Ionization MS
journal, December 2014

  • López de Laorden, Carlos; Beloqui, Ana; Yate, Luis
  • Analytical Chemistry, Vol. 87, Issue 1
  • DOI: 10.1021/ac5025864

Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms
journal, March 2016

  • Stopka, Sylwia A.; Rong, Charles; Korte, Andrew R.
  • Angewandte Chemie International Edition, Vol. 55, Issue 14
  • DOI: 10.1002/anie.201511691

Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications
journal, January 2010

  • Mark, Daniel; Haeberle, Stefan; Roth, Günter
  • Chemical Society Reviews, Vol. 39, Issue 3
  • DOI: 10.1039/b820557b

MALDI-TOF mass spectrometry of a combinatorial peptide library: effect of matrix composition on signal suppression
journal, January 2005

  • Schlosser, Gitta; Pocsfalvi, Gabriella; Huszár, Emőke
  • Journal of Mass Spectrometry, Vol. 40, Issue 12
  • DOI: 10.1002/jms.937

Tailored Silicon Nanopost Arrays for Resonant Nanophotonic Ion Production
journal, February 2010

  • Walker, Bennett N.; Stolee, Jessica A.; Pickel, Deanna L.
  • The Journal of Physical Chemistry C, Vol. 114, Issue 11
  • DOI: 10.1021/jp9110103

Nanoparticle-assisted MALDI-TOF MS combined with seed-layer surface preparation for quantification of small molecules
journal, July 2011


Online Monitoring of Enzymatic Reactions Using Time-Resolved Desorption Electrospray Ionization Mass Spectrometry
journal, January 2017


Quantitative analysis of low molecular weight compounds of biological interest by matrix-assisted laser desorption ionization
journal, December 1993

  • Duncan, Mark W.; Matanovic, Gabrijela; Cerpa-Poljak, Anne
  • Rapid Communications in Mass Spectrometry, Vol. 7, Issue 12
  • DOI: 10.1002/rcm.1290071207

Nanomaterials in mass spectrometry ionization and prospects for biological application
journal, November 2005

  • Guo, Zhong; Ganawi, Amel A. A.; Liu, Qiang
  • Analytical and Bioanalytical Chemistry, Vol. 384, Issue 3
  • DOI: 10.1007/s00216-005-0125-3

Nanoscale chemical analysis by tip-enhanced Raman spectroscopy
journal, February 2000

  • Stöckle, Raoul M.; Suh, Yung Doug; Deckert, Volker
  • Chemical Physics Letters, Vol. 318, Issue 1-3, p. 131-136
  • DOI: 10.1016/S0009-2614(99)01451-7

Practical quantitative biomedical applications of MALDI-TOF mass spectrometry
journal, September 2002

  • Bucknall, Martin; Fung, Kim Y. C.; Duncan, Mark W.
  • Journal of the American Society for Mass Spectrometry, Vol. 13, Issue 9
  • DOI: 10.1016/S1044-0305(02)00426-9

Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues
journal, March 2004


MALDI imaging mass spectrometry: molecular snapshots of biochemical systems
journal, September 2007

  • Cornett, Dale S.; Reyzer, Michelle L.; Chaurand, Pierre
  • Nature Methods, Vol. 4, Issue 10
  • DOI: 10.1038/nmeth1094

Plasmonic silver nanoshells for drug and metabolite detection
journal, August 2017


Adjustable Fragmentation in Laser Desorption/Ionization from Laser-Induced Silicon Microcolumn Arrays
journal, August 2006

  • Chen, Yong; Vertes, Akos
  • Analytical Chemistry, Vol. 78, Issue 16
  • DOI: 10.1021/ac060405n

Nanodiamond MALDI support for enhancing the credibility of identifying proteins
journal, February 2008


Nanophotonic Ionization for Ultratrace and Single-Cell Analysis by Mass Spectrometry
journal, August 2012

  • Walker, Bennett N.; Stolee, Jessica A.; Vertes, Akos
  • Analytical Chemistry, Vol. 84, Issue 18
  • DOI: 10.1021/ac301238k

Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites
journal, January 2017


Laser desorption ionization (LDI) silicon nanopost array chips fabricated using deep UV projection lithography and deep reactive ion etching
journal, January 2015

  • Morris, Nicholas J.; Anderson, Heather; Thibeault, Brian
  • RSC Advances, Vol. 5, Issue 88
  • DOI: 10.1039/C5RA11875A

Desorption–ionization mass spectrometry on porous silicon
journal, May 1999

  • Wei, Jing; Buriak, Jillian M.; Siuzdak, Gary
  • Nature, Vol. 399, Issue 6733
  • DOI: 10.1038/20400

Investigating the Quantitative Nature of MALDI-TOF MS
journal, July 2008

  • Szájli, Emília; Fehér, Tamás; Medzihradszky, Katalin F.
  • Molecular & Cellular Proteomics, Vol. 7, Issue 12
  • DOI: 10.1074/mcp.M800108-MCP200

Matrix-Free LDI Mass Spectrometry Platform Using Patterned Nanostructured Gold Thin Film
journal, September 2010

  • Nayak, Ranu; Knapp, Daniel R.
  • Analytical Chemistry, Vol. 82, Issue 18
  • DOI: 10.1021/ac1017277

Desorption/ionization on silicon (DIOS): A diverse mass spectrometry platform for protein characterization
journal, April 2001

  • Thomas, J. J.; Shen, Z.; Crowell, J. E.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 9
  • DOI: 10.1073/pnas.081069298

Electromagnetic fields around silver nanoparticles and dimers
journal, January 2004

  • Hao, Encai; Schatz, George C.
  • The Journal of Chemical Physics, Vol. 120, Issue 1, p. 357-366
  • DOI: 10.1063/1.1629280

On the role of defects and surface chemistry for surface-assisted laser desorption ionization from silicon
journal, January 2008

  • Alimpiev, S.; Grechnikov, A.; Sunner, J.
  • The Journal of Chemical Physics, Vol. 128, Issue 1
  • DOI: 10.1063/1.2802304

Multifunctional Magnetic Particles for Combined Circulating Tumor Cells Isolation and Cellular Metabolism Detection
journal, February 2016

  • Wu, Jiao; Wei, Xiang; Gan, Jinrui
  • Advanced Functional Materials, Vol. 26, Issue 22
  • DOI: 10.1002/adfm.201504184

Approaches for the analysis of low molecular weight compounds with laser desorption/ionization techniques and mass spectrometry
journal, December 2013

  • Bergman, Nina; Shevchenko, Denys; Bergquist, Jonas
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 1
  • DOI: 10.1007/s00216-013-7471-3

Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS
journal, June 2005

  • Pan, Chensong; Xu, Songyun; Hu, Ligang
  • Journal of the American Society for Mass Spectrometry, Vol. 16, Issue 6, p. 883-892
  • DOI: 10.1016/j.jasms.2005.03.009

Comparative analysis of circular and triangular gold nanodisks for field enhancement applications
journal, December 2010

  • Costa, Karlo Q. da; Dmitriev, Victor
  • Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 9, Issue 2
  • DOI: 10.1590/S2179-10742010000200006

Combined Immunocapture and Laser Desorption/Ionization Mass Spectrometry on Porous Silicon
journal, May 2010

  • Lowe, Rachel D.; Szili, Endre J.; Kirkbride, Paul
  • Analytical Chemistry, Vol. 82, Issue 10
  • DOI: 10.1021/ac100455x

Quantitative proteomics reveals the kinetics of trypsin-catalyzed protein digestion
journal, August 2014

  • Pan, Yanbo; Cheng, Kai; Mao, Jiawei
  • Analytical and Bioanalytical Chemistry, Vol. 406, Issue 25
  • DOI: 10.1007/s00216-014-8071-6

Graphene nanoflakes as an efficient ionizing matrix for MALDI-MS based lipidomics of cancer cells and cancer stem cells
journal, January 2014

  • Hua, Pei-Yang; Manikandan, M.; Abdelhamid, Hani Nasser
  • J. Mater. Chem. B, Vol. 2, Issue 42
  • DOI: 10.1039/C4TB00970C

Large optical field enhancement for nanotips with large opening angles
journal, June 2015

  • Thomas, Sebastian; Wachter, Georg; Lemell, Christoph
  • New Journal of Physics, Vol. 17, Issue 6, Article No. 063010
  • DOI: 10.1088/1367-2630/17/6/063010

Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced Raman Spectroscopy
journal, December 2010

  • Hatab, Nahla A.; Hsueh, Chun-Hway; Gaddis, Abigail L.
  • Nano Letters, Vol. 10, Issue 12, p. 4952-4955
  • DOI: 10.1021/nl102963g

Monitoring Enzyme Catalysis with Mass Spectrometry
journal, April 2000

  • Bothner, Brian; Chavez, Rodrigo; Wei, Jing
  • Journal of Biological Chemistry, Vol. 275, Issue 18
  • DOI: 10.1074/jbc.275.18.13455

Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions
journal, December 1995

  • Sunner, Jan.; Dratz, Edward.; Chen, Yu-Chie.
  • Analytical Chemistry, Vol. 67, Issue 23
  • DOI: 10.1021/ac00119a021

Identifying Proteins Using Matrix-Assisted Laser Desorption/Ionization In-Source Fragmentation Data Combined with Database Searching
journal, February 1998

  • Reiber, Duane C.; Grover, Thomas A.; Brown, Robert S.
  • Analytical Chemistry, Vol. 70, Issue 4
  • DOI: 10.1021/ac971157l

High-Energy Fragmentation in Nanophotonic Ion Production by Laser-Induced Silicon Microcolumn Arrays
journal, October 2009

  • Stolee, Jessica A.; Chen, Yong; Vertes, Akos
  • The Journal of Physical Chemistry C, Vol. 114, Issue 12
  • DOI: 10.1021/jp906834z

MALDI Ionization:  The Role of In-Plume Processes
journal, February 2003

  • Knochenmuss, R.; Zenobi, R.
  • Chemical Reviews, Vol. 103, Issue 2
  • DOI: 10.1021/cr0103773

Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna
journal, October 2009

  • Kinkhabwala, Anika; Yu, Zongfu; Fan, Shanhui
  • Nature Photonics, Vol. 3, Issue 11, p. 654-657
  • DOI: 10.1038/nphoton.2009.187

Clathrate nanostructures for mass spectrometry
journal, October 2007

  • Northen, Trent R.; Yanes, Oscar; Northen, Michael T.
  • Nature, Vol. 449, Issue 7165
  • DOI: 10.1038/nature06195

Large-Scale Metabolite Analysis of Standards and Human Serum by Laser Desorption Ionization Mass Spectrometry from Silicon Nanopost Arrays
journal, July 2016


Rapid fabrication of high aspect ratio silicon nanopillars for chemical analysis
journal, November 2007


Aptamer-Conjugated Multifunctional Nanoflowers as a Platform for Targeting, Capture, and Detection in Laser Desorption Ionization Mass Spectrometry
journal, December 2012

  • Ocsoy, Ismail; Gulbakan, Basri; Shukoor, Mohammed Ibrahim
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn304458m

Diamond nanowires for highly sensitive matrix-free mass spectrometry analysis of small molecules
journal, January 2012

  • Coffinier, Yannick; Szunerits, Sabine; Drobecq, Hervé
  • Nanoscale, Vol. 4, Issue 1
  • DOI: 10.1039/C1NR11274K

Assessment of laser-induced thermal load on silicon nanostructures based on ion desorption yields
journal, July 2010

  • Walker, Bennett N.; Stolee, Jessica A.; Pickel, Deanna L.
  • Applied Physics A, Vol. 101, Issue 3
  • DOI: 10.1007/s00339-010-5893-8

Recent progress in application of carbon nanomaterials in laser desorption/ionization mass spectrometry
journal, January 2016

  • Wang, Jing; Liu, Qian; Liang, Yong
  • Analytical and Bioanalytical Chemistry, Vol. 408, Issue 11
  • DOI: 10.1007/s00216-015-9255-4

SALDI-TOF-MS analyses of small molecules (citric acid, dexasone, vitamins E and A) using TiO2 nanocrystals as substrates
journal, August 2016

  • Popović, Iva A.; Nešić, Maja; Vranješ, Mila
  • Analytical and Bioanalytical Chemistry, Vol. 408, Issue 26
  • DOI: 10.1007/s00216-016-9846-8

    Works referencing / citing this record:

    Matrix‐free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays
    journal, December 2018

    • Fincher, Jarod A.; Dyer, Jacqueline E.; Korte, Andrew R.
    • Journal of Comparative Neurology, Vol. 527, Issue 13
    • DOI: 10.1002/cne.24566

    Matrix‐free mass spectrometry imaging of mouse brain tissue sections on silicon nanopost arrays
    journal, December 2018

    • Fincher, Jarod A.; Dyer, Jacqueline E.; Korte, Andrew R.
    • Journal of Comparative Neurology, Vol. 527, Issue 13
    • DOI: 10.1002/cne.24566

    Design of plasmonic nanomaterials for diagnostic spectrometry
    journal, January 2019

    • Gurav, Deepanjali Dattatray; Jia, Yi (Alec); Ye, Jian
    • Nanoscale Advances, Vol. 1, Issue 2
    • DOI: 10.1039/c8na00319j

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.