DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Survey geometry and the internal consistency of recent cosmic shear measurements

Abstract

We explore the impact of an update to the typical approximation for the shape noise term in the analytic covariance matrix for cosmic shear experiments that assumes the absence of survey boundary and mask effects. We present an exact expression for the number of galaxy pairs in this term based on the survey mask, which leads to more than a factor of three increase in the shape noise on the largest measured scales for the Kilo-Degree Survey (KiDS-450) real-space cosmic shear data. We compare the result of this analytic expression to several alternative methods for measuring the shape noise from the data and find excellent agreement. This update to the covariance resolves any internal model tension evidenced by the previously large cosmological best-fitting χ2 for the KiDS-450 cosmic shear data. The best-fitting χ2 is reduced from 161 to 121 for 118 degrees of freedom. We also apply a correction to how the multiplicative shear calibration uncertainty is included in the covariance. This change shifts the inferred amplitude of the correlation function to higher values. In conclusion, we find that this improves agreement of the KiDS-450 cosmic shear results with Dark Energy Survey Year 1 and Planck results.

Authors:
 [1];  [2];  [3];  [2];  [4]; ORCiD logo [5];  [1];  [6];  [7];  [8];  [9];  [10]; ORCiD logo [4];  [6];  [11];  [12];  [13];  [14]; ORCiD logo [10]; ORCiD logo [9] more »;  [15];  [16];  [10];  [17]; ORCiD logo [18];  [14];  [19];  [17];  [17]; ORCiD logo [20];  [21];  [14];  [5];  [22];  [23];  [10]; ORCiD logo [24];  [7];  [11];  [22];  [25];  [17];  [14];  [26];  [17];  [24];  [27];  [28];  [24];  [26];  [23];  [22];  [17];  [29];  [30];  [1];  [31];  [14];  [32];  [17];  [27];  [33]; ORCiD logo [11];  [23];  [34];  [35];  [22];  [36];  [5];  [25];  [17];  [37];  [25];  [38];  [39];  [40]; ORCiD logo [41];  [42];  [20];  [43];  [44] « less
  1. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  2. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  3. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  4. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  5. Kavli Institute for Particle Astrophysics, Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  6. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  7. Kavli Institute for Particle Astrophysics, Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA
  8. Kavli Institute for Particle Astrophysics, Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
  9. Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15312, USA
  10. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain
  11. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  12. Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Geneva, Switzerland; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil
  13. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  14. Department of Physics, Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
  15. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain; Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  16. Brookhaven National Laboratory, Bldg 510, Upton, NY 11973, USA
  17. Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  18. Institute for Astronomy, University of Edinburgh, Edinburgh EH9 3HJ, UK
  19. Department of Physics, Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
  20. Institute of Cosmology, Gravitation, University of Portsmouth, Portsmouth, PO1 3FX, UK
  21. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  22. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil
  23. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  24. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  25. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), E-28040 Madrid, Spain
  26. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA
  27. Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA; Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
  28. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  29. Department of Physics, Astronomy, University College London, Gower Street, London, WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  30. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  31. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  32. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  33. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil; Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo SP-05314-970, Brazil
  34. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona) Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  35. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany; Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany; Faculty of Physics, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 Munich, Germany
  36. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  37. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  38. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  39. Brandeis University, Physics Department, 415 South Street, Waltham, MA 02453, USA
  40. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil; Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP, Brazil
  41. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  42. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  43. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  44. Kavli Institute for Particle Astrophysics, Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR); USDOE Office of Science (SC), High Energy Physics (HEP)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1468027
Alternate Identifier(s):
OSTI ID: 1644816
Grant/Contract Number:  
AC05-00OR22725; SC0007859
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 479; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Gravitational lensing: weak; methods: data analysis; methods: statistical

Citation Formats

Troxel, M. A., Krause, E., Chang, C., Eifler, T. F., Friedrich, O., Gruen, D., MacCrann, N., Chen, A., Davis, C., DeRose, J., Dodelson, S., Gatti, M., Hoyle, B., Huterer, D., Jarvis, M., Lacasa, F., Lemos, P., Peiris, H. V., Prat, J., Samuroff, S., Sánchez, C., Sheldon, E., Vielzeuf, P., Wang, M., Zuntz, J., Lahav, O., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Crocce, M., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kirk, D., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., March, M., Menanteau, F., Miquel, R., Mohr, J. J., Ogando, R. L. C., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Schindler, R., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Thomas, D., Walker, A. R., and Wechsler, R. H. Survey geometry and the internal consistency of recent cosmic shear measurements. United States: N. p., 2018. Web. doi:10.1093/mnras/sty1889.
Troxel, M. A., Krause, E., Chang, C., Eifler, T. F., Friedrich, O., Gruen, D., MacCrann, N., Chen, A., Davis, C., DeRose, J., Dodelson, S., Gatti, M., Hoyle, B., Huterer, D., Jarvis, M., Lacasa, F., Lemos, P., Peiris, H. V., Prat, J., Samuroff, S., Sánchez, C., Sheldon, E., Vielzeuf, P., Wang, M., Zuntz, J., Lahav, O., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Crocce, M., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kirk, D., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., March, M., Menanteau, F., Miquel, R., Mohr, J. J., Ogando, R. L. C., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Schindler, R., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Thomas, D., Walker, A. R., & Wechsler, R. H. Survey geometry and the internal consistency of recent cosmic shear measurements. United States. https://doi.org/10.1093/mnras/sty1889
Troxel, M. A., Krause, E., Chang, C., Eifler, T. F., Friedrich, O., Gruen, D., MacCrann, N., Chen, A., Davis, C., DeRose, J., Dodelson, S., Gatti, M., Hoyle, B., Huterer, D., Jarvis, M., Lacasa, F., Lemos, P., Peiris, H. V., Prat, J., Samuroff, S., Sánchez, C., Sheldon, E., Vielzeuf, P., Wang, M., Zuntz, J., Lahav, O., Abdalla, F. B., Allam, S., Annis, J., Avila, S., Bertin, E., Brooks, D., Burke, D. L., Rosell, A. Carnero, Kind, M. Carrasco, Carretero, J., Crocce, M., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., De Vicente, J., Diehl, H. T., Doel, P., Evrard, A. E., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Hollowood, D. L., Honscheid, K., James, D. J., Kirk, D., Kuehn, K., Kuropatkin, N., Li, T. S., Lima, M., March, M., Menanteau, F., Miquel, R., Mohr, J. J., Ogando, R. L. C., Plazas, A. A., Roodman, A., Sanchez, E., Scarpine, V., Schindler, R., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Thomas, D., Walker, A. R., and Wechsler, R. H. Fri . "Survey geometry and the internal consistency of recent cosmic shear measurements". United States. https://doi.org/10.1093/mnras/sty1889. https://www.osti.gov/servlets/purl/1468027.
@article{osti_1468027,
title = {Survey geometry and the internal consistency of recent cosmic shear measurements},
author = {Troxel, M. A. and Krause, E. and Chang, C. and Eifler, T. F. and Friedrich, O. and Gruen, D. and MacCrann, N. and Chen, A. and Davis, C. and DeRose, J. and Dodelson, S. and Gatti, M. and Hoyle, B. and Huterer, D. and Jarvis, M. and Lacasa, F. and Lemos, P. and Peiris, H. V. and Prat, J. and Samuroff, S. and Sánchez, C. and Sheldon, E. and Vielzeuf, P. and Wang, M. and Zuntz, J. and Lahav, O. and Abdalla, F. B. and Allam, S. and Annis, J. and Avila, S. and Bertin, E. and Brooks, D. and Burke, D. L. and Rosell, A. Carnero and Kind, M. Carrasco and Carretero, J. and Crocce, M. and Cunha, C. E. and D’Andrea, C. B. and da Costa, L. N. and De Vicente, J. and Diehl, H. T. and Doel, P. and Evrard, A. E. and Flaugher, B. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gaztanaga, E. and Gerdes, D. W. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Hollowood, D. L. and Honscheid, K. and James, D. J. and Kirk, D. and Kuehn, K. and Kuropatkin, N. and Li, T. S. and Lima, M. and March, M. and Menanteau, F. and Miquel, R. and Mohr, J. J. and Ogando, R. L. C. and Plazas, A. A. and Roodman, A. and Sanchez, E. and Scarpine, V. and Schindler, R. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Thomas, D. and Walker, A. R. and Wechsler, R. H.},
abstractNote = {We explore the impact of an update to the typical approximation for the shape noise term in the analytic covariance matrix for cosmic shear experiments that assumes the absence of survey boundary and mask effects. We present an exact expression for the number of galaxy pairs in this term based on the survey mask, which leads to more than a factor of three increase in the shape noise on the largest measured scales for the Kilo-Degree Survey (KiDS-450) real-space cosmic shear data. We compare the result of this analytic expression to several alternative methods for measuring the shape noise from the data and find excellent agreement. This update to the covariance resolves any internal model tension evidenced by the previously large cosmological best-fitting χ2 for the KiDS-450 cosmic shear data. The best-fitting χ2 is reduced from 161 to 121 for 118 degrees of freedom. We also apply a correction to how the multiplicative shear calibration uncertainty is included in the covariance. This change shifts the inferred amplitude of the correlation function to higher values. In conclusion, we find that this improves agreement of the KiDS-450 cosmic shear results with Dark Energy Survey Year 1 and Planck results.},
doi = {10.1093/mnras/sty1889},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 479,
place = {United States},
year = {Fri Jun 15 00:00:00 EDT 2018},
month = {Fri Jun 15 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 62 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: The impact of updates to the KiDS-450 covariance diagonal. Upper panel: The ratio of the true shape noise term to the geometric approximation in the (1,1) tomographic bin pair, which has a nominal range of $z$ = 0.1 to 0.3, from (a) the variance of $ξ$ (Var($ξ$+) ismore » also consistent) measured from 1000 random rotations of the KiDS-450 shape catalogue (blue circles), (b) replacing $n$eff with the measured $N$p($θ$) in Eq. 5 (red squares), and (c) an analytic prediction for $N$p($θ$) from the survey mask in Eq. 6 with (solid) and without (dotted) source clustering (green lines). We compare the impact for a DES Y1-like survey footprint. For KiDS-450, the correction increases the shape noise by up to a factor of 3.5 on the largest measured scales, which corresponds to a maximum factor of 1.4 for DES Y1. On the smallest scales, the shape noise is slightly decreased due to source clustering. Lower panel: The ratio of the final corrected covariance to the original covariance for $ξ$+ (black stars) and $ξ$ (blue triangles). Only angular scales used in the H17 analysis are shown. We include the (4,4) tomographic bin pair with nominal range $z$ = 0.7 to 0.9 for comparison (open symbols).« less

Save / Share:

Works referenced in this record:

Cosmic Shear Results from the deep lens Survey. ii. full Cosmological Parameter Constraints from Tomography
journal, June 2016


KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering
journal, October 2017

  • Joudaki, Shahab; Blake, Chris; Johnson, Andrew
  • Monthly Notices of the Royal Astronomical Society, Vol. 474, Issue 4
  • DOI: 10.1093/mnras/stx2820

An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models
journal, October 2015

  • Mead, A. J.; Peacock, J. A.; Heymans, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 2
  • DOI: 10.1093/mnras/stv2036

Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann‐Robertson‐Walker Models
journal, August 2000

  • Lewis, Antony; Challinor, Anthony; Lasenby, Anthony
  • The Astrophysical Journal, Vol. 538, Issue 2
  • DOI: 10.1086/309179

Analysis of two-point statistics of cosmic shear: I. Estimators and covariances
journal, November 2002


CMB power spectrum parameter degeneracies in the era of precision cosmology
journal, April 2012

  • Howlett, Cullan; Lewis, Antony; Hall, Alex
  • Journal of Cosmology and Astroparticle Physics, Vol. 2012, Issue 04
  • DOI: 10.1088/1475-7516/2012/04/027

CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics
journal, October 2016

  • Joudaki, Shahab; Blake, Chris; Heymans, Catherine
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 2
  • DOI: 10.1093/mnras/stw2665

Practical Weak-lensing Shear Measurement with Metacalibration
journal, May 2017


Constraints on the Mass–Richness Relation from the Abundance and Weak Lensing of SDSS Clusters
journal, February 2018

  • Murata, Ryoma; Nishimichi, Takahiro; Takada, Masahiro
  • The Astrophysical Journal, Vol. 854, Issue 2
  • DOI: 10.3847/1538-4357/aaaab8

Stable clustering, the halo model and non-linear cosmological power spectra
journal, June 2003


Cosmic voids and void lensing in the Dark Energy Survey Science Verification data
journal, October 2016

  • Sánchez, C.; Clampitt, J.; Kovacs, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 1
  • DOI: 10.1093/mnras/stw2745

HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere
journal, April 2005

  • Gorski, K. M.; Hivon, E.; Banday, A. J.
  • The Astrophysical Journal, Vol. 622, Issue 2
  • DOI: 10.1086/427976

Statistical inconsistencies in the KiDS-450 data set
journal, January 2018

  • Efstathiou, George; Lemos, Pablo
  • Monthly Notices of the Royal Astronomical Society, Vol. 476, Issue 1
  • DOI: 10.1093/mnras/sty099

Analysis of two-point statistics of cosmic shear: II. Optimizing the survey geometry
journal, December 2003


Revising the Halofit Model for the Nonlinear Matter Power Spectrum
journal, December 2012

  • Takahashi, Ryuichi; Sato, Masanori; Nishimichi, Takahiro
  • The Astrophysical Journal, Vol. 761, Issue 2
  • DOI: 10.1088/0004-637X/761/2/152

Power spectrum super-sample covariance
journal, June 2013


Galaxy–galaxy lensing estimators and their covariance properties
journal, July 2017

  • Singh, Sukhdeep; Mandelbaum, Rachel; Seljak, Uroš
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 4
  • DOI: 10.1093/mnras/stx1828

Galaxy Alignments: An Overview
journal, July 2015

  • Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.
  • Space Science Reviews, Vol. 193, Issue 1-4
  • DOI: 10.1007/s11214-015-0177-4

The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey
journal, December 2017

  • Mandelbaum, Rachel; Miyatake, Hironao; Hamana, Takashi
  • Publications of the Astronomical Society of Japan, Vol. 70, Issue SP1
  • DOI: 10.1093/pasj/psx130

Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.
  • The Astrophysical Journal Supplement Series, Vol. 235, Issue 2
  • DOI: 10.3847/1538-4365/aab4f5

Bayesian galaxy shape measurement for weak lensing surveys – III. Application to the Canada–France–Hawaii Telescope Lensing Survey
journal, January 2013

  • Miller, L.; Heymans, C.; Kitching, T. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 429, Issue 4
  • DOI: 10.1093/mnras/sts454

CosmoSIS: Modular cosmological parameter estimation
journal, September 2015


KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing
journal, November 2016

  • Hildebrandt, H.; Viola, M.; Heymans, C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 465, Issue 2
  • DOI: 10.1093/mnras/stw2805

cosmolike – cosmological likelihood analyses for photometric galaxy surveys
journal, May 2017

  • Krause, Elisabeth; Eifler, Tim
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 2
  • DOI: 10.1093/mnras/stx1261

Massive neutrinos and the non-linear matter power spectrum: The matter power with neutrinos
journal, January 2012


CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments
journal, May 2013

  • Heymans, Catherine; Grocutt, Emma; Heavens, Alan
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 3
  • DOI: 10.1093/mnras/stt601

Observational probes of cosmic acceleration
journal, September 2013


Planck 2015 results : XIII. Cosmological parameters
journal, September 2016


Gravitational lensing analysis of the Kilo-Degree Survey
journal, October 2015

  • Kuijken, Konrad; Heymans, Catherine; Hildebrandt, Hendrik
  • Monthly Notices of the Royal Astronomical Society, Vol. 454, Issue 4
  • DOI: 10.1093/mnras/stv2140

The first and second data releases of the Kilo-Degree Survey
journal, October 2015

  • de Jong, Jelte T. A.; Verdoes Kleijn, Gijs A.; Boxhoorn, Danny R.
  • Astronomy & Astrophysics, Vol. 582
  • DOI: 10.1051/0004-6361/201526601

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey – imaging data and catalogue products
journal, June 2013

  • Erben, T.; Hildebrandt, H.; Miller, L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 3
  • DOI: 10.1093/mnras/stt928

Analytic marginalization over CMB calibration and beam uncertainty
journal, October 2002


Analysis of two-point statistics of cosmic shear: III. Covariances of shear measures made easy
journal, November 2007


Accurate halo-model matter power spectra with dark energy, massive neutrinos and modified gravitational forces
journal, March 2016

  • Mead, A. J.; Heymans, C.; Lombriser, L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 459, Issue 2
  • DOI: 10.1093/mnras/stw681

Planck 2015 results : XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation
journal, September 2016


Galaxy alignments: An overview
text, January 2016

  • Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.
  • Carnegie Mellon University
  • DOI: 10.1184/r1/6506831

Planck 2015 results : X. Diffuse component separation: Foreground maps
journal, September 2016


Planck 2015 results : XVI. Isotropy and statistics of the CMB
journal, September 2016


Galaxy alignments: An overview
text, January 2016

  • Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.
  • Carnegie Mellon University
  • DOI: 10.1184/r1/6506831.v1

Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology
text, January 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, Es
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.21145

Planck 2015 results : XXVI. The Second
journal, September 2016


CMB power spectrum parameter degeneracies in the era of precision cosmology
text, January 2012


Power Spectrum Super-Sample Covariance
text, January 2013


CosmoSIS: modular cosmological parameter estimation
text, January 2014


Planck 2015 results. XIII. Cosmological parameters
text, January 2015


An accurate halo model for fitting non-linear cosmological power spectra and baryonic feedback models
text, January 2015


CFHTLenS revisited: assessing concordance with Planck including astrophysical systematics
text, January 2016


Cosmic Voids and Void Lensing in the Dark Energy Survey Science Verification Data
text, January 2016


Practical Weak Lensing Shear Measurement with Metacalibration
text, January 2017


Statistical Inconsistencies in the KiDS-450 Dataset
text, January 2017


Dark Energy Survey Year 1 Results: Photometric Data Set for Cosmology
text, January 2017


Analytic marginalization over CMB calibration and beam uncertainty
text, January 2001


Analysis of two-point statistics of cosmic shear: I. Estimators and covariances
text, January 2002


Stable clustering, the halo model and nonlinear cosmological power spectra
text, January 2002


Works referencing / citing this record:

KiDS+VIKING-450: Cosmic shear tomography with optical and infrared data
journal, January 2020


KiDS+VIKING-450: A new combined optical and near-infrared dataset for cosmology and astrophysics
journal, November 2019


COSMOGRAIL: XVIII. time delays of the quadruply lensed quasar WFI2033−4723⋆
journal, September 2019


Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data
journal, July 2018

  • Abbott, T. M. C.; Abdalla, F. B.; Annis, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 3
  • DOI: 10.1093/mnras/sty1939

KiDS-450: enhancing cosmic shear with clipping transformations
journal, August 2018

  • Giblin, Benjamin; Heymans, Catherine; Harnois-Déraps, Joachim
  • Monthly Notices of the Royal Astronomical Society, Vol. 480, Issue 4
  • DOI: 10.1093/mnras/sty2271

A unified analysis of four cosmic shear surveys
journal, October 2018

  • Chang, Chihway; Wang, Michael; Dodelson, Scott
  • Monthly Notices of the Royal Astronomical Society, Vol. 482, Issue 3
  • DOI: 10.1093/mnras/sty2902

Methods for cluster cosmology and application to the SDSS in preparation for DES Year 1 release
journal, July 2019

  • Costanzi, M.; Rozo, E.; Simet, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 4
  • DOI: 10.1093/mnras/stz1949

Can intrinsic alignments of elongated low-mass galaxies be used to map the cosmic web at high redshift?
journal, August 2019

  • Pandya, Viraj; Primack, Joel; Behroozi, Peter
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 4
  • DOI: 10.1093/mnras/stz2129

Dark Energy Survey Year 1 results: constraints on intrinsic alignments and their colour dependence from galaxy clustering and weak lensing
journal, August 2019

  • Samuroff, S.; Blazek, J.; Troxel, M. A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 4
  • DOI: 10.1093/mnras/stz2197

KiDS + GAMA: constraints on horndeski gravity from combined large-scale structure probes
journal, September 2019

  • Spurio Mancini, A.; Köhlinger, F.; Joachimi, B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 2
  • DOI: 10.1093/mnras/stz2581

Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data
journal, March 2019

  • Hikage, Chiaki; Oguri, Masamune; Hamana, Takashi
  • Publications of the Astronomical Society of Japan, Vol. 71, Issue 2
  • DOI: 10.1093/pasj/psz010

Detection of Cross-Correlation between Gravitational Lensing and γ Rays
journal, March 2020


Constraints on Cosmology and Baryonic Feedback with the Deep Lens Survey Using Galaxy–Galaxy and Galaxy–Mass Power Spectra
journal, January 2019

  • Yoon, Mijin; James Jee, M.; Anthony Tyson, J.
  • The Astrophysical Journal, Vol. 870, Issue 2
  • DOI: 10.3847/1538-4357/aaf3a9

KiDS+VIKING-450: A new combined optical and near-infrared dataset for cosmology and astrophysics
text, January 2019

  • Wright, Ah; Hildebrandt, H.; Kuijken, K.
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47370

Dark Energy Survey Year 1 Results: Cosmological Constraints from Cosmic Shear
text, January 2017


Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data
text, January 2017


KiDS-450: Enhancing cosmic shear with clipping transformations
text, January 2018


A Unified Analysis of Four Cosmic Shear Surveys
text, January 2018


Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data
text, January 2018


KiDS+GAMA: Constraints on Horndeski gravity from combined large-scale structure probes
text, January 2019


COSMOGRAIL XVIII: time delays of the quadruply lensed quasar WFI2033-4723
text, January 2019


Detection of cross-correlation between gravitational lensing and gamma rays
text, January 2019


Debiasing inference with approximate covariance matrices and other unidentified biases
journal, August 2019


Figures / Tables found in this record:

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.