DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks

Abstract

We report that the ability to accurately and efficiently compute quantum-mechanical partial atomistic charges has many practical applications, such as calculations of IR spectra, analysis of chemical bonding, and classical force field parametrization. Machine learning (ML) techniques provide a possible avenue for the efficient prediction of atomic partial charges. Modern ML advances in the prediction of molecular energies [i.e., the hierarchical interacting particle neural network (HIP-NN)] has provided the necessary model framework and architecture to predict transferable, extensible, and conformationally dynamic atomic partial charges based on reference density functional theory (DFT) simulations. Utilizing HIP-NN, we show that ML charge prediction can be highly accurate over a wide range of molecules (both small and large) across a variety of charge partitioning schemes such as the Hirshfeld, CM5, MSK, and NBO methods. To demonstrate transferability and size extensibility, we compare ML results with reference DFT calculations on the COMP6 benchmark, achieving errors of 0.004e (elementary charge). This is remarkable since this benchmark contains two proteins that are multiple times larger than the largest molecules in the training set. An application of our atomic charge predictions on nonequilibrium geometries is the generation of IR spectra for organic molecules from dynamical trajectories on amore » variety of organic molecules, which show good agreement with calculated IR spectra with reference method. Critically, HIP-NN charge predictions are many orders of magnitude faster than direct DFT calculations. Lastly, these combined results provide further evidence that ML (specifically HIP-NN) provides a pathway to greatly increase the range of feasible simulations while retaining quantum-level accuracy.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [1];  [4];  [5]; ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Florida, Gainesville, FL (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of Southern California, Los Angeles, CA (United States)
  4. Univ. of North Carolina, Chapel Hill, NC (United States)
  5. Univ. of Florida, Gainesville, FL (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1467336
Report Number(s):
LA-UR-18-22005
Journal ID: ISSN 1549-9618
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 14; Journal Issue: 9; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 97 MATHEMATICS AND COMPUTING

Citation Formats

Nebgen, Benjamin Tyler, Lubbers, Nicholas Edward, Smith, Justin Steven, Sifain, Andrew E., Lokhov, Andrey, Isayev, Olexandr, Roitberg, Adrian, Barros, Kipton Marcos, and Tretiak, Sergei. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks. United States: N. p., 2018. Web. doi:10.1021/acs.jctc.8b00524.
Nebgen, Benjamin Tyler, Lubbers, Nicholas Edward, Smith, Justin Steven, Sifain, Andrew E., Lokhov, Andrey, Isayev, Olexandr, Roitberg, Adrian, Barros, Kipton Marcos, & Tretiak, Sergei. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks. United States. https://doi.org/10.1021/acs.jctc.8b00524
Nebgen, Benjamin Tyler, Lubbers, Nicholas Edward, Smith, Justin Steven, Sifain, Andrew E., Lokhov, Andrey, Isayev, Olexandr, Roitberg, Adrian, Barros, Kipton Marcos, and Tretiak, Sergei. Tue . "Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks". United States. https://doi.org/10.1021/acs.jctc.8b00524. https://www.osti.gov/servlets/purl/1467336.
@article{osti_1467336,
title = {Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks},
author = {Nebgen, Benjamin Tyler and Lubbers, Nicholas Edward and Smith, Justin Steven and Sifain, Andrew E. and Lokhov, Andrey and Isayev, Olexandr and Roitberg, Adrian and Barros, Kipton Marcos and Tretiak, Sergei},
abstractNote = {We report that the ability to accurately and efficiently compute quantum-mechanical partial atomistic charges has many practical applications, such as calculations of IR spectra, analysis of chemical bonding, and classical force field parametrization. Machine learning (ML) techniques provide a possible avenue for the efficient prediction of atomic partial charges. Modern ML advances in the prediction of molecular energies [i.e., the hierarchical interacting particle neural network (HIP-NN)] has provided the necessary model framework and architecture to predict transferable, extensible, and conformationally dynamic atomic partial charges based on reference density functional theory (DFT) simulations. Utilizing HIP-NN, we show that ML charge prediction can be highly accurate over a wide range of molecules (both small and large) across a variety of charge partitioning schemes such as the Hirshfeld, CM5, MSK, and NBO methods. To demonstrate transferability and size extensibility, we compare ML results with reference DFT calculations on the COMP6 benchmark, achieving errors of 0.004e– (elementary charge). This is remarkable since this benchmark contains two proteins that are multiple times larger than the largest molecules in the training set. An application of our atomic charge predictions on nonequilibrium geometries is the generation of IR spectra for organic molecules from dynamical trajectories on a variety of organic molecules, which show good agreement with calculated IR spectra with reference method. Critically, HIP-NN charge predictions are many orders of magnitude faster than direct DFT calculations. Lastly, these combined results provide further evidence that ML (specifically HIP-NN) provides a pathway to greatly increase the range of feasible simulations while retaining quantum-level accuracy.},
doi = {10.1021/acs.jctc.8b00524},
journal = {Journal of Chemical Theory and Computation},
number = 9,
volume = 14,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Perspective: Fifty years of density-functional theory in chemical physics
journal, May 2014

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 140, Issue 18
  • DOI: 10.1063/1.4869598

Density functional theory: Its origins, rise to prominence, and future
journal, August 2015


The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
journal, January 2018

  • Yao, Kun; Herr, John E.; Toth, David W.
  • Chemical Science, Vol. 9, Issue 8
  • DOI: 10.1039/C7SC04934J

ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
journal, January 2017

  • Smith, J. S.; Isayev, O.; Roitberg, A. E.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05720A

ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules
journal, December 2017

  • Smith, Justin S.; Isayev, Olexandr; Roitberg, Adrian E.
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2017.193

Quantum chemistry structures and properties of 134 kilo molecules
journal, August 2014

  • Ramakrishnan, Raghunathan; Dral, Pavlo O.; Rupp, Matthias
  • Scientific Data, Vol. 1, Issue 1
  • DOI: 10.1038/sdata.2014.22

Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
journal, January 2012


SchNet – A deep learning architecture for molecules and materials
journal, June 2018

  • Schütt, K. T.; Sauceda, H. E.; Kindermans, P. -J.
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5019779

Less is more: Sampling chemical space with active learning
journal, June 2018

  • Smith, Justin S.; Nebgen, Ben; Lubbers, Nicholas
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5023802

Hierarchical modeling of molecular energies using a deep neural network
journal, June 2018

  • Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5011181

Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
journal, April 2007


Constructing high-dimensional neural network potentials: A tutorial review
journal, March 2015

  • Behler, Jörg
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24890

Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space
journal, June 2015

  • Hansen, Katja; Biegler, Franziska; Ramakrishnan, Raghunathan
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 12
  • DOI: 10.1021/acs.jpclett.5b00831

Atom-centered symmetry functions for constructing high-dimensional neural network potentials
journal, February 2011

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 134, Issue 7
  • DOI: 10.1063/1.3553717

Quantum-chemical insights from deep tensor neural networks
journal, January 2017

  • Schütt, Kristof T.; Arbabzadah, Farhad; Chmiela, Stefan
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13890

Multi-fidelity machine learning models for accurate bandgap predictions of solids
journal, March 2017


Machine learning of molecular electronic properties in chemical compound space
journal, September 2013


Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property Relationships
journal, November 2017

  • Janet, Jon Paul; Kulik, Heather J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 46
  • DOI: 10.1021/acs.jpca.7b08750

Accelerated materials property predictions and design using motif-based fingerprints
journal, July 2015

  • Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Ramprasad, Rampi
  • Physical Review B, Vol. 92, Issue 1
  • DOI: 10.1103/PhysRevB.92.014106

High-throughput and data mining with ab initio methods
journal, December 2004

  • Morgan, Dane; Ceder, Gerbrand; Curtarolo, Stefano
  • Measurement Science and Technology, Vol. 16, Issue 1
  • DOI: 10.1088/0957-0233/16/1/039

Machine Learning for Silver Nanoparticle Electron Transfer Property Prediction
journal, October 2017

  • Sun, Baichuan; Fernandez, Michael; Barnard, Amanda S.
  • Journal of Chemical Information and Modeling, Vol. 57, Issue 10
  • DOI: 10.1021/acs.jcim.7b00272

Machine learning for quantum dynamics: deep learning of excitation energy transfer properties
journal, January 2017

  • Häse, Florian; Kreisbeck, Christoph; Aspuru-Guzik, Alán
  • Chemical Science, Vol. 8, Issue 12
  • DOI: 10.1039/C7SC03542J

Machine learning exciton dynamics
journal, January 2016

  • Häse, Florian; Valleau, Stéphanie; Pyzer-Knapp, Edward
  • Chemical Science, Vol. 7, Issue 8
  • DOI: 10.1039/C5SC04786B

Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases
journal, February 2012

  • Marenich, Aleksandr V.; Jerome, Steven V.; Cramer, Christopher J.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 2, p. 527-541
  • DOI: 10.1021/ct200866d

The electronegativity equalization method and the split charge equilibration applied to organic systems: Parametrization, validation, and comparison
journal, July 2009

  • Verstraelen, Toon; Van Speybroeck, Veronique; Waroquier, Michel
  • The Journal of Chemical Physics, Vol. 131, Issue 4
  • DOI: 10.1063/1.3187034

AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules
journal, October 2015

  • Ionescu, Crina-Maria; Sehnal, David; Falginella, Francesco L.
  • Journal of Cheminformatics, Vol. 7, Issue 1
  • DOI: 10.1186/s13321-015-0099-x

Can the electronegativity equalization method predict spectroscopic properties?
journal, February 2015

  • Verstraelen, T.; Bultinck, P.
  • Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 136
  • DOI: 10.1016/j.saa.2013.10.124

Molecular dynamics simulation of infrared spectra and average structure of benzoic acid crystal
journal, June 1988

  • Nakamura, Ryoko; Machida, Katsunosuke; Oobatake, Motohisa
  • Molecular Physics, Vol. 64, Issue 2
  • DOI: 10.1080/00268978800100183

An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0
journal, October 2011

  • Malde, Alpeshkumar K.; Zuo, Le; Breeze, Matthew
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 12
  • DOI: 10.1021/ct200196m

A Universal Approach to Solvation Modeling
journal, June 2008

  • Cramer, Christopher J.; Truhlar, Donald G.
  • Accounts of Chemical Research, Vol. 41, Issue 6
  • DOI: 10.1021/ar800019z

Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges
journal, November 2012

  • Vanommeslaeghe, K.; Raman, E. Prabhu; MacKerell, A. D.
  • Journal of Chemical Information and Modeling, Vol. 52, Issue 12
  • DOI: 10.1021/ci3003649

Automatic atom type and bond type perception in molecular mechanical calculations
journal, October 2006

  • Wang, Junmei; Wang, Wei; Kollman, Peter A.
  • Journal of Molecular Graphics and Modelling, Vol. 25, Issue 2
  • DOI: 10.1016/j.jmgm.2005.12.005

A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges
journal, February 2012

  • Morawietz, Tobias; Sharma, Vikas; Behler, Jörg
  • The Journal of Chemical Physics, Vol. 136, Issue 6
  • DOI: 10.1063/1.3682557

Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network
journal, July 2015


Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems
journal, January 2018


High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide
journal, April 2011


Machine learning molecular dynamics for the simulation of infrared spectra
journal, January 2017

  • Gastegger, Michael; Behler, Jörg; Marquetand, Philipp
  • Chemical Science, Vol. 8, Issue 10
  • DOI: 10.1039/C7SC02267K

Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101¯0) interface from a high-dimensional neural network potential
journal, June 2018

  • Quaranta, Vanessa; Hellström, Matti; Behler, Jörg
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5012980

Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning
journal, June 2018

  • Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre
  • The Journal of Chemical Physics, Vol. 148, Issue 24
  • DOI: 10.1063/1.5009502

Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations
journal, February 2018

  • Bleiziffer, Patrick; Schaller, Kay; Riniker, Sereina
  • Journal of Chemical Information and Modeling, Vol. 58, Issue 3
  • DOI: 10.1021/acs.jcim.7b00663

Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I
journal, October 1955

  • Mulliken, R. S.
  • The Journal of Chemical Physics, Vol. 23, Issue 10
  • DOI: 10.1063/1.1740588

Bonded-atom fragments for describing molecular charge densities
journal, January 1977


Natural population analysis
journal, July 1985

  • Reed, Alan E.; Weinstock, Robert B.; Weinhold, Frank
  • The Journal of Chemical Physics, Vol. 83, Issue 2
  • DOI: 10.1063/1.449486

An approach to computing electrostatic charges for molecules
journal, April 1984

  • Singh, U. Chandra; Kollman, Peter A.
  • Journal of Computational Chemistry, Vol. 5, Issue 2
  • DOI: 10.1002/jcc.540050204

Intermolecular Interactions in Complex Liquids: Effective Fragment Potential Investigation of Water– tert -Butanol Mixtures
journal, February 2012

  • Hands, Michael D.; Slipchenko, Lyudmila V.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 9
  • DOI: 10.1021/jp2077566

Molecular graph convolutions: moving beyond fingerprints
journal, August 2016

  • Kearnes, Steven; McCloskey, Kevin; Berndl, Marc
  • Journal of Computer-Aided Molecular Design, Vol. 30, Issue 8
  • DOI: 10.1007/s10822-016-9938-8

How to represent crystal structures for machine learning: Towards fast prediction of electronic properties
journal, May 2014


Fourier series of atomic radial distribution functions: A molecular fingerprint for machine learning models of quantum chemical properties
journal, April 2015

  • von Lilienfeld, O. Anatole; Ramakrishnan, Raghunathan; Rupp, Matthias
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24912

Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials
journal, March 2015


Moment Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials
journal, January 2016

  • Shapeev, Alexander V.
  • Multiscale Modeling & Simulation, Vol. 14, Issue 3
  • DOI: 10.1137/15M1054183

Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error
journal, October 2017

  • Faber, Felix A.; Hutchison, Luke; Huang, Bing
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00577

Virtual Exploration of the Small-Molecule Chemical Universe below 160 Daltons
journal, February 2005

  • Fink, Tobias; Bruggesser, Heinz; Reymond, Jean-Louis
  • Angewandte Chemie International Edition, Vol. 44, Issue 10
  • DOI: 10.1002/anie.200462457

Systematic optimization of long-range corrected hybrid density functionals
journal, February 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 128, Issue 8
  • DOI: 10.1063/1.2834918

Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements
journal, October 1982

  • Francl, Michelle M.; Pietro, William J.; Hehre, Warren J.
  • The Journal of Chemical Physics, Vol. 77, Issue 7, p. 3654-3665
  • DOI: 10.1063/1.444267

Active learning of linearly parametrized interatomic potentials
journal, December 2017


Genetic Optimization of Training Sets for Improved Machine Learning Models of Molecular Properties
journal, March 2017

  • Browning, Nicholas J.; Ramakrishnan, Raghunathan; von Lilienfeld, O. Anatole
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.7b00038

Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels
journal, June 2017

  • Dral, Pavlo O.; Owens, Alec; Yurchenko, Sergei N.
  • The Journal of Chemical Physics, Vol. 146, Issue 24
  • DOI: 10.1063/1.4989536

Addressing uncertainty in atomistic machine learning
journal, January 2017

  • Peterson, Andrew A.; Christensen, Rune; Khorshidi, Alireza
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 18
  • DOI: 10.1039/C7CP00375G

Query by committee
conference, January 1992

  • Seung, H. S.; Opper, M.; Sompolinsky, H.
  • Proceedings of the fifth annual workshop on Computational learning theory - COLT '92
  • DOI: 10.1145/130385.130417

970 Million Druglike Small Molecules for Virtual Screening in the Chemical Universe Database GDB-13
journal, July 2009

  • Blum, Lorenz C.; Reymond, Jean-Louis
  • Journal of the American Chemical Society, Vol. 131, Issue 25
  • DOI: 10.1021/ja902302h

DrugBank 4.0: shedding new light on drug metabolism
journal, November 2013

  • Law, Vivian; Knox, Craig; Djoumbou, Yannick
  • Nucleic Acids Research, Vol. 42, Issue D1
  • DOI: 10.1093/nar/gkt1068

The S66x8 benchmark for noncovalent interactions revisited: explicitly correlated ab initio methods and density functional theory
journal, January 2016

  • Brauer, Brina; Kesharwani, Manoj K.; Kozuch, Sebastian
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 31
  • DOI: 10.1039/C6CP00688D

10 Residue Folded Peptide Designed by Segment Statistics
journal, August 2004


Designing a 20-residue protein
journal, April 2002

  • Neidigh, Jonathan W.; Fesinmeyer, R. Matthew; Andersen, Niels H.
  • Nature Structural Biology, Vol. 9, Issue 6
  • DOI: 10.1038/nsb798

Structure of Glucoamylase from Saccharomycopsis fibuligera at 1.7 Å Resolution
journal, September 1998

  • Sevcík, J.; Solovicová, A.; Hostinová, E.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 54, Issue 5
  • DOI: 10.1107/S0907444998002005

Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation 1 1Edited by J. Thornton
journal, January 1999

  • Word, J. Michael; Lovell, Simon C.; Richardson, Jane S.
  • Journal of Molecular Biology, Vol. 285, Issue 4
  • DOI: 10.1006/jmbi.1998.2401

Works referencing / citing this record:

Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning
journal, July 2019


Design, Parameterization, and Implementation of Atomic Force Fields for Adsorption in Nanoporous Materials
journal, September 2019

  • Dubbeldam, David; Walton, Krista S.; Vlugt, Thijs J. H.
  • Advanced Theory and Simulations, Vol. 2, Issue 11
  • DOI: 10.1002/adts.201900135

Dynamical matrix propagator scheme for large-scale proton dynamics simulations
journal, March 2020

  • Dreßler, Christian; Kabbe, Gabriel; Brehm, Martin
  • The Journal of Chemical Physics, Vol. 152, Issue 11
  • DOI: 10.1063/1.5140635

Compressing physics with an autoencoder: Creating an atomic species representation to improve machine learning models in the chemical sciences
journal, August 2019

  • Herr, John E.; Koh, Kevin; Yao, Kun
  • The Journal of Chemical Physics, Vol. 151, Issue 8
  • DOI: 10.1063/1.5108803

Operators in quantum machine learning: Response properties in chemical space
journal, February 2019

  • Christensen, Anders S.; Faber, Felix A.; von Lilienfeld, O. Anatole
  • The Journal of Chemical Physics, Vol. 150, Issue 6
  • DOI: 10.1063/1.5053562

Incorporating long-range physics in atomic-scale machine learning
journal, November 2019

  • Grisafi, Andrea; Ceriotti, Michele
  • The Journal of Chemical Physics, Vol. 151, Issue 20
  • DOI: 10.1063/1.5128375

Unexpectedly high cross-plane thermoelectric performance of layered carbon nitrides
journal, January 2019

  • Ding, Zhidong; An, Meng; Mo, Shenqiu
  • Journal of Materials Chemistry A, Vol. 7, Issue 5
  • DOI: 10.1039/c8ta10500f

Incorporating long-range physics in atomic-scale machine learning
text, January 2019