skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: All-dielectric metasurface absorbers for uncooled terahertz imaging

Abstract

Imaging in the terahertz (THz) range of the electromagnetic spectrum is difficult owing to the lack of high-power sources and efficient detectors. For decades, there has been tremendous effort to fashion focal plane arrays for THz imaging owing to the great number of potential applications. Here, we propose and demonstrate an alternative approach which utilizes all-dielectric metasurface absorbers that act as universal converters of radiation. Incident THz waves are absorbed by the metasurface, converted to heat, and subsequently detected by an infrared camera. We realize a metasurface consisting of sub-wavelength cylindrical resonators that achieve diffraction-limited imaging at THz frequencies without cooling. The low thermal conductivity and diffusivity significantly limit the thermal conduction between neighboring pixels, thus improving the spatial resolution and imaging time. Similar to conventional metallic-based metamaterials, our all-dielectric metasurface absorber can be scaled to other bands of the electromagnetic spectrum, offering a blueprint to achieve novel uncooled bolometric imaging.

Authors:
 [1];  [1];  [1];  [1]
  1. Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering
Publication Date:
Research Org.:
Duke Univ., Durham, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1467092
Grant/Contract Number:  
SC0014372; ECCS-1542015
Resource Type:
Accepted Manuscript
Journal Name:
Optica
Additional Journal Information:
Journal Volume: 4; Journal Issue: 6; Journal ID: ISSN 2334-2536
Publisher:
Optical Society of America
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; metamaterials; terahertz imaging; infrared imaging; absorption; diffraction limit; electromagnetic radiation; power spectra; split ring resonators; thermal management

Citation Formats

Fan, Kebin, Suen, Jonathan Y., Liu, Xinyu, and Padilla, Willie J. All-dielectric metasurface absorbers for uncooled terahertz imaging. United States: N. p., 2017. Web. doi:10.1364/OPTICA.4.000601.
Fan, Kebin, Suen, Jonathan Y., Liu, Xinyu, & Padilla, Willie J. All-dielectric metasurface absorbers for uncooled terahertz imaging. United States. doi:10.1364/OPTICA.4.000601.
Fan, Kebin, Suen, Jonathan Y., Liu, Xinyu, and Padilla, Willie J. Wed . "All-dielectric metasurface absorbers for uncooled terahertz imaging". United States. doi:10.1364/OPTICA.4.000601. https://www.osti.gov/servlets/purl/1467092.
@article{osti_1467092,
title = {All-dielectric metasurface absorbers for uncooled terahertz imaging},
author = {Fan, Kebin and Suen, Jonathan Y. and Liu, Xinyu and Padilla, Willie J.},
abstractNote = {Imaging in the terahertz (THz) range of the electromagnetic spectrum is difficult owing to the lack of high-power sources and efficient detectors. For decades, there has been tremendous effort to fashion focal plane arrays for THz imaging owing to the great number of potential applications. Here, we propose and demonstrate an alternative approach which utilizes all-dielectric metasurface absorbers that act as universal converters of radiation. Incident THz waves are absorbed by the metasurface, converted to heat, and subsequently detected by an infrared camera. We realize a metasurface consisting of sub-wavelength cylindrical resonators that achieve diffraction-limited imaging at THz frequencies without cooling. The low thermal conductivity and diffusivity significantly limit the thermal conduction between neighboring pixels, thus improving the spatial resolution and imaging time. Similar to conventional metallic-based metamaterials, our all-dielectric metasurface absorber can be scaled to other bands of the electromagnetic spectrum, offering a blueprint to achieve novel uncooled bolometric imaging.},
doi = {10.1364/OPTICA.4.000601},
journal = {Optica},
number = 6,
volume = 4,
place = {United States},
year = {2017},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 39 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Taming the Blackbody with Infrared Metamaterials as Selective Thermal Emitters
journal, July 2011


Graphene metamaterial modulator for free-space thermal radiation
journal, January 2016

  • Fan, Kebin; Suen, Jonathan; Wu, Xueyuan
  • Optics Express, Vol. 24, Issue 22
  • DOI: 10.1364/OE.24.025189

Extremely Low Frequency Plasmons in Metallic Mesostructures
journal, June 1996

  • Pendry, J. B.; Holden, A. J.; Stewart, W. J.
  • Physical Review Letters, Vol. 76, Issue 25, p. 4773-4776
  • DOI: 10.1103/PhysRevLett.76.4773

Magnetism from conductors and enhanced nonlinear phenomena
journal, January 1999

  • Pendry, J. B.; Holden, A. J.; Robbins, D. J.
  • IEEE Transactions on Microwave Theory and Techniques, Vol. 47, Issue 11, p. 2075-2084
  • DOI: 10.1109/22.798002

Perfect Metamaterial Absorber
journal, May 2008


A dual band terahertz metamaterial absorber
journal, May 2010


Experimental realization of a terahertz all-dielectric metasurface absorber
journal, January 2017

  • Liu, Xinyu; Fan, Kebin; Shadrivov, Ilya V.
  • Optics Express, Vol. 25, Issue 1
  • DOI: 10.1364/OE.25.000191

Single Pixel Quadrature Imaging with Metamaterials
journal, October 2015

  • Nadell, Christian C.; Watts, Claire M.; Montoya, John A.
  • Advanced Optical Materials, Vol. 4, Issue 1
  • DOI: 10.1002/adom.201500435

Dynamic Manipulation of Infrared Radiation with MEMS Metamaterials
journal, June 2013


Ultrabroadband Plasmonic Absorber for Terahertz Waves
journal, October 2014

  • Cheng, Yong Zhi; Withayachumnankul, Withawat; Upadhyay, Aditi
  • Advanced Optical Materials, Vol. 3, Issue 3
  • DOI: 10.1002/adom.201400368

High-Efficiency Dielectric Huygens’ Surfaces
journal, February 2015

  • Decker, Manuel; Staude, Isabelle; Falkner, Matthias
  • Advanced Optical Materials, Vol. 3, Issue 6, p. 813-820
  • DOI: 10.1002/adom.201400584

Terahertz All-Dielectric Magnetic Mirror Metasurfaces
journal, April 2016


Dielectric Resonator Reflectarray as High-Efficiency Nonuniform Terahertz Metasurface
journal, April 2016


Classical Holography in the Terahertz Range: Recording and Reconstruction Techniques
journal, September 2015

  • Choporova, Yulia Yu.; Knyazev, Boris A.; Mitkov, Mikhail S.
  • IEEE Transactions on Terahertz Science and Technology, Vol. 5, Issue 5
  • DOI: 10.1109/TTHZ.2015.2460465

Bolometric THz-to-IR converter for terahertz imaging
journal, July 2011

  • Kuznetsov, Sergey A.; Paulish, Andrey G.; Gelfand, Alexander V.
  • Applied Physics Letters, Vol. 99, Issue 2
  • DOI: 10.1063/1.3607474

Tailoring Directional Scattering through Magnetic and Electric Resonances in Subwavelength Silicon Nanodisks
journal, August 2013

  • Staude, Isabelle; Miroshnichenko, Andrey E.; Decker, Manuel
  • ACS Nano, Vol. 7, Issue 9, p. 7824-7832
  • DOI: 10.1021/nn402736f

Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth
journal, July 1994

  • Mongia, Rajesh K.; Bhartia, Prakash
  • International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, Vol. 4, Issue 3
  • DOI: 10.1002/mmce.4570040304

Measurement of the thermal conductivity anisotropy in polyimide films
journal, June 1999

  • Kurabayashi, K.; Asheghi, M.; Touzelbaev, M.
  • Journal of Microelectromechanical Systems, Vol. 8, Issue 2
  • DOI: 10.1109/84.767114

Low-loss polymers for terahertz applications
journal, January 2008


    Works referencing / citing this record:

    Light-emitting metasurfaces
    journal, July 2019

    • Vaskin, Aleksandr; Kolkowski, Radoslaw; Koenderink, A. Femius
    • Nanophotonics, Vol. 8, Issue 7
    • DOI: 10.1515/nanoph-2019-0110

    Light-emitting metasurfaces
    journal, July 2019

    • Vaskin, Aleksandr; Kolkowski, Radoslaw; Koenderink, A. Femius
    • Nanophotonics, Vol. 8, Issue 7
    • DOI: 10.1515/nanoph-2019-0110