skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dual-mode crystal-bound and X-type passivation of quantum dots

Abstract

In this work, we present a new path to the control of quantum dot surface chemistry that can lead to a better understanding of nanoscale interfaces and the development of improved photocatalysts. Control of the synthetic methodology leads to QDs that are concomitantly ligated by crystal-bound organics at the surface anion sites and small X-type ligands on the surface cation sites.

Authors:
 [1];  [2];  [1];  [3];  [4];  [5];  [6]
  1. Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemistry and Vanderbilt Inst. of Nanoscale Science and Engineering
  2. Vanderbilt Univ., Nashville, TN (United States). Dept. of Physics and Astronomy; Univ. of Memphis, Memphis, TN (United States). Dept. of Physics and Materials Science
  3. Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemistry and Vanderbilt Inst. of Nanoscale Science and Engineering; Univ. of Central Florida, Orlando, FL (United States). Dept. of Chemistry
  4. Vanderbilt Univ., Nashville, TN (United States). Vanderbilt Inst. of Nanoscale Science and Engineering; Tennessee State Univ., Nashville, TN (United States). Dept. of Chemistry
  5. Vanderbilt Univ., Nashville, TN (United States). Vanderbilt Inst. of Nanoscale Science and Engineering, Dept. of Physics and Astronomy and Dept. of Electrical Engineering and Computer Science
  6. Vanderbilt Univ., Nashville, TN (United States). Dept. of Chemistry and Dept. of Physics and Astronomy
Publication Date:
Research Org.:
Vanderbilt Univ., Nashville, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; National Science Foundation (NSF); National Institutes of Health (NIH); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
OSTI Identifier:
1466989
Grant/Contract Number:  
FG02-09ER46554; AC02-05CH11231; NSF-1253105; NSF EPS-1004083; 2T34GM007663
Resource Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 52; Journal Issue: 82; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Turo, Michael J., Shen, Xiao, Brandon, Nazharie K., Castillo, Stephanie, Fall, Amadou M., Pantelides, Sokrates T., and Macdonald, Janet E. Dual-mode crystal-bound and X-type passivation of quantum dots. United States: N. p., 2016. Web. doi:10.1039/c6cc05951a.
Turo, Michael J., Shen, Xiao, Brandon, Nazharie K., Castillo, Stephanie, Fall, Amadou M., Pantelides, Sokrates T., & Macdonald, Janet E. Dual-mode crystal-bound and X-type passivation of quantum dots. United States. doi:10.1039/c6cc05951a.
Turo, Michael J., Shen, Xiao, Brandon, Nazharie K., Castillo, Stephanie, Fall, Amadou M., Pantelides, Sokrates T., and Macdonald, Janet E. Fri . "Dual-mode crystal-bound and X-type passivation of quantum dots". United States. doi:10.1039/c6cc05951a. https://www.osti.gov/servlets/purl/1466989.
@article{osti_1466989,
title = {Dual-mode crystal-bound and X-type passivation of quantum dots},
author = {Turo, Michael J. and Shen, Xiao and Brandon, Nazharie K. and Castillo, Stephanie and Fall, Amadou M. and Pantelides, Sokrates T. and Macdonald, Janet E.},
abstractNote = {In this work, we present a new path to the control of quantum dot surface chemistry that can lead to a better understanding of nanoscale interfaces and the development of improved photocatalysts. Control of the synthetic methodology leads to QDs that are concomitantly ligated by crystal-bound organics at the surface anion sites and small X-type ligands on the surface cation sites.},
doi = {10.1039/c6cc05951a},
journal = {ChemComm},
number = 82,
volume = 52,
place = {United States},
year = {2016},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Soluble, Chloride-Terminated CdSe Nanocrystals: Ligand Exchange Monitored by 1 H and 31 P NMR Spectroscopy
journal, December 2012

  • Anderson, Nicholas C.; Owen, Jonathan S.
  • Chemistry of Materials, Vol. 25, Issue 1
  • DOI: 10.1021/cm303219a

Hybrid passivated colloidal quantum dot solids
journal, July 2012

  • Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.127

Preparation of a ZnS Shell on CdSe Quantum Dots Using a Single-Molecular ZnS Precursor
journal, May 2011

  • Dethlefsen, Johannes R.; Døssing, Anders
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200211n

Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand
journal, May 2010

  • Frederick, Matthew T.; Weiss, Emily A.
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn1007435

Crystal-Bound vs Surface-Bound Thiols on Nanocrystals
journal, September 2014

  • Turo, Michael J.; Macdonald, Janet E.
  • ACS Nano, Vol. 8, Issue 10, p. 10205-10213
  • DOI: 10.1021/nn5032164

Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid
journal, May 2014


A Solution NMR Toolbox for Characterizing the Surface Chemistry of Colloidal Nanocrystals
journal, February 2013

  • Hens, Zeger; Martins, José C.
  • Chemistry of Materials, Vol. 25, Issue 8
  • DOI: 10.1021/cm303361s

Synthesis of Metal-Selenide Nanocrystals Using Selenium Dioxide as the Selenium Precursor
journal, October 2008

  • Chen, Ou; Chen, Xian; Yang, Yongan
  • Angewandte Chemie International Edition, Vol. 47, Issue 45
  • DOI: 10.1002/anie.200804266

Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking
journal, February 2013

  • Chen, Ou; Zhao, Jing; Chauhan, Vikash P.
  • Nature Materials, Vol. 12, Issue 5
  • DOI: 10.1038/nmat3539

Simple and Generalized Synthesis of Semiconducting Metal Sulfide Nanocrystals
journal, May 2009

  • Choi, Sang-Hyun; An, Kwangjin; Kim, Eung-Gyu
  • Advanced Functional Materials, Vol. 19, Issue 10
  • DOI: 10.1002/adfm.200800832

Surface Synthesis of Zinc Sulfide Nanoparticles on Silica Microspheres:  Sonochemical Preparation, Characterization, and Optical Properties
journal, March 1999

  • Dhas, N. Arul; Zaban, A.; Gedanken, A.
  • Chemistry of Materials, Vol. 11, Issue 3
  • DOI: 10.1021/cm980670s

Shape control and applications of nanocrystals
journal, December 2002

  • Scher, Erik C.; Manna, Liberato; Alivisatos, A. Paul
  • Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 361, Issue 1803
  • DOI: 10.1098/rsta.2002.1126

Robust Photogeneration of H2 in Water Using Semiconductor Nanocrystals and a Nickel Catalyst
journal, November 2012


Surface Structures and Crystal Morphology of ZnS:  Computational Study
journal, October 2002

  • Hamad, Said; Cristol, Sylvain; Catlow, C. Richard A.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 42
  • DOI: 10.1021/jp026396d

Colloidal nanocrystal synthesis and the organic–inorganic interface
journal, September 2005

  • Yin, Yadong; Alivisatos, A. Paul
  • Nature, Vol. 437, Issue 7059, p. 664-670
  • DOI: 10.1038/nature04165

Reaction Chemistry and Ligand Exchange at Cadmium−Selenide Nanocrystal Surfaces
journal, September 2008

  • Owen, Jonathan S.; Park, Jungwon; Trudeau, Paul-Emile
  • Journal of the American Chemical Society, Vol. 130, Issue 37
  • DOI: 10.1021/ja804414f

Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols
journal, September 2001

  • Aldana, Jose; Wang, Y. Andrew; Peng, Xiaogang
  • Journal of the American Chemical Society, Vol. 123, Issue 36
  • DOI: 10.1021/ja016424q

Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Core/Shell Semiconductor Nanocrystals
journal, January 2009


The coordination chemistry of nanocrystal surfaces
journal, February 2015


Visible Light-Induced Charge Retention and Photocatalysis with Hybrid CdSe−Au Nanodumbbells
journal, February 2008

  • Costi, Ronny; Saunders, Aaron E.; Elmalem, Einat
  • Nano Letters, Vol. 8, Issue 2
  • DOI: 10.1021/nl0730514

Semiconductor Clusters, Nanocrystals, and Quantum Dots
journal, February 1996


Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core
journal, March 1993


The nature of quantum dot capping ligands
journal, January 2010


Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals
journal, April 1998

  • Wei, Su-Huai; Zunger, Alex
  • Applied Physics Letters, Vol. 72, Issue 16
  • DOI: 10.1063/1.121249

Bright and Stable Alloy Core/Multishell Quantum Dots
journal, November 2012

  • Jun, Shinae; Jang, Eunjoo
  • Angewandte Chemie International Edition, Vol. 52, Issue 2
  • DOI: 10.1002/anie.201206333