DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding [Development of a Many-Body Density Functional Tight Binding Model for Plutonium Surface Hydriding]

Abstract

We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. Here, we find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Lastly, our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences Directorate; Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering
  2. Univ. of Bremen (Germany). Bremen Center for Computational Materials Science
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Sciences Directorate
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1466952
Report Number(s):
LLNL-JRNL-746090
Journal ID: ISSN 1549-9618; 930532
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Theory and Computation
Additional Journal Information:
Journal Volume: 14; Journal Issue: 5; Journal ID: ISSN 1549-9618
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Goldman, Nir, Aradi, Bálint, Lindsey, Rebecca K., and Fried, Laurence E. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding [Development of a Many-Body Density Functional Tight Binding Model for Plutonium Surface Hydriding]. United States: N. p., 2018. Web. doi:10.1021/acs.jctc.8b00165.
Goldman, Nir, Aradi, Bálint, Lindsey, Rebecca K., & Fried, Laurence E. Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding [Development of a Many-Body Density Functional Tight Binding Model for Plutonium Surface Hydriding]. United States. https://doi.org/10.1021/acs.jctc.8b00165
Goldman, Nir, Aradi, Bálint, Lindsey, Rebecca K., and Fried, Laurence E. Tue . "Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding [Development of a Many-Body Density Functional Tight Binding Model for Plutonium Surface Hydriding]". United States. https://doi.org/10.1021/acs.jctc.8b00165. https://www.osti.gov/servlets/purl/1466952.
@article{osti_1466952,
title = {Development of a Multicenter Density Functional Tight Binding Model for Plutonium Surface Hydriding [Development of a Many-Body Density Functional Tight Binding Model for Plutonium Surface Hydriding]},
author = {Goldman, Nir and Aradi, Bálint and Lindsey, Rebecca K. and Fried, Laurence E.},
abstractNote = {We detail the creation of a multicenter density functional tight binding (DFTB) model for hydrogen on δ-plutonium, using a framework of new Slater-Koster interaction parameters and a repulsive energy based on the Chebyshev Interaction Model for Efficient Simulation (ChIMES), where two- and three-center atomic interactions are represented by linear combinations of Chebyshev polynomials. Here, we find that our DFTB/ChIMES model yields a total electron density of states for bulk δ-Pu that compares well to that from Density Functional Theory, as well as to a grid of energy calculations representing approximate H2 dissociation paths on the δ-Pu (100) surface. We then perform molecular dynamics simulations and minimum energy pathway calculations to determine the energetics of surface dissociation and subsurface diffusion on the (100) and (111) surfaces. Our approach allows for the efficient creation of multicenter repulsive energies with a relatively small investment in initial DFT calculations. Lastly, our efforts are particularly pertinent to studies that rely on quantum calculations for interpretation and validation, such as experimental determination of chemical reactivity both on surfaces and in condensed phases.},
doi = {10.1021/acs.jctc.8b00165},
journal = {Journal of Chemical Theory and Computation},
number = 5,
volume = 14,
place = {United States},
year = {Tue Apr 03 00:00:00 EDT 2018},
month = {Tue Apr 03 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 24 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Does hybrid density functional theory predict a non-magnetic ground state for δ-Pu?
journal, January 2009


Change in flow stress and ductility of δ-phase Pu–Ga alloys due to self-irradiation damage
journal, January 2005


Ab initio study of gallium stabilized δ-plutonium alloys and hydrogen–vacancy complexes
journal, May 2014

  • Hernandez, Sarah C.; Schwartz, Daniel S.; Taylor, Christopher D.
  • Journal of Physics: Condensed Matter, Vol. 26, Issue 23
  • DOI: 10.1088/0953-8984/26/23/235502

A density functional study of atomic hydrogen adsorption on plutonium layers
journal, October 2004


An ab initio study of H2 interaction with the Pu (100) surface
journal, September 2005


Hydriding and dehydriding energies of PuHx from ab initio calculations
journal, August 2015


Structural, magnetic, and dynamic properties of PuH2+ (x= 0, 0.25, 0.5, 0.75, 1): A hybrid density functional study
journal, December 2017


Ambient pressure phase diagram of plutonium: A unified theory for α-Pu and δ-Pu
journal, August 2001


The electronic and structural properties of δ-Pu and PuO from the LSDA (GGA)+U method
journal, September 2010


Phonon and magnetic structure in δ-plutonium from density-functional theory
journal, October 2015

  • Söderlind, Per; Zhou, F.; Landa, A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep15958

Origin of the multiple configurations that drive the response of δ-plutonium’s elastic moduli to temperature
journal, September 2016

  • Migliori, Albert; Söderlind, Per; Landa, Alexander
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 40
  • DOI: 10.1073/pnas.1609215113

Density functional theory study of defects in unalloyed δ-Pu
journal, June 2017


A First-Principles Study of Hydrogen Diffusivity and Dissociation on δ-Pu (100) and (111) Surfaces
journal, August 2017

  • Goldman, Nir; Morales, Miguel A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 33
  • DOI: 10.1021/acs.jpcc.7b04992

Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
journal, September 1998

  • Elstner, M.; Porezag, D.; Jungnickel, G.
  • Physical Review B, Vol. 58, Issue 11, p. 7260-7268
  • DOI: 10.1103/PhysRevB.58.7260

Parameter Calibration of Transition-Metal Elements for the Spin-Polarized Self-Consistent-Charge Density-Functional Tight-Binding (DFTB) Method:  Sc, Ti, Fe, Co, and Ni
journal, May 2007

  • Zheng, Guishan; Witek, Henryk A.; Bobadova-Parvanova, Petia
  • Journal of Chemical Theory and Computation, Vol. 3, Issue 4
  • DOI: 10.1021/ct600312f

Density-functional tight-binding for beginners
journal, November 2009


DFTB3: Extension of the Self-Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB)
journal, March 2011

  • Gaus, Michael; Cui, Qiang; Elstner, Marcus
  • Journal of Chemical Theory and Computation, Vol. 7, Issue 4
  • DOI: 10.1021/ct100684s

DFTB+, a Sparse Matrix-Based Implementation of the DFTB Method
journal, July 2007

  • Aradi, B.; Hourahine, B.; Frauenheim, Th.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp070186p

Multi-center semi-empirical quantum models for carbon under extreme thermodynamic conditions
journal, February 2015


Using Force-Matched Potentials To Improve the Accuracy of Density Functional Tight Binding for Reactive Conditions
journal, September 2015

  • Goldman, Nir; Fried, Laurence E.; Koziol, Lucas
  • Journal of Chemical Theory and Computation, Vol. 11, Issue 10
  • DOI: 10.1021/acs.jctc.5b00742

Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon
journal, May 1995


Extending the Density Functional Tight Binding Method to Carbon Under Extreme Conditions
journal, November 2011

  • Goldman, Nir; Fried, Laurence E.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 3
  • DOI: 10.1021/jp206768x

Determination of a Density Functional Tight Binding Model with an Extended Basis Set and Three-Body Repulsion for Carbon Under Extreme Pressures and Temperatures
journal, April 2013

  • Goldman, Nir; Goverapet Srinivasan, Sriram; Hamel, Sebastien
  • The Journal of Physical Chemistry C, Vol. 117, Issue 15
  • DOI: 10.1021/jp312759j

A Density Functional Tight Binding Model with an Extended Basis Set and Three-Body Repulsion for Hydrogen under Extreme Thermodynamic Conditions
journal, July 2014

  • Srinivasan, Sriram Goverapet; Goldman, Nir; Tamblyn, Isaac
  • The Journal of Physical Chemistry A, Vol. 118, Issue 29
  • DOI: 10.1021/jp5036713

Using Force Matching To Determine Reactive Force Fields for Water under Extreme Thermodynamic Conditions
journal, December 2016

  • Koziol, Lucas; Fried, Laurence E.; Goldman, Nir
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 1
  • DOI: 10.1021/acs.jctc.6b00707

ChIMES: A Force Matched Potential with Explicit Three-Body Interactions for Molten Carbon
journal, November 2017

  • Lindsey, Rebecca K.; Fried, Laurence E.; Goldman, Nir
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 12
  • DOI: 10.1021/acs.jctc.7b00867

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


High-precision sampling for Brillouin-zone integration in metals
journal, August 1989


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Correlation-induced anomalies and extreme sensitivity in fcc Pu
journal, August 2009


First-principles thermodynamic calculations for δ-Pu and ε-Pu
journal, May 2000


The valence-fluctuating ground state of plutonium
journal, July 2015

  • Janoschek, Marc; Das, Pinaki; Chakrabarti, Bismayan
  • Science Advances, Vol. 1, Issue 6
  • DOI: 10.1126/sciadv.1500188

Self-Consistent-Charge Density-Functional Tight-Binding (SCC-DFTB) Parameters for Ceria in 0D to 3D
journal, February 2017

  • Kullgren, Jolla; Wolf, Matthew J.; Hermansson, Kersti
  • The Journal of Physical Chemistry C, Vol. 121, Issue 8
  • DOI: 10.1021/acs.jpcc.6b10557

Steepest-descent determination of occupation numbers and energy minimization in the local-density approximation
journal, July 1992


Self-Interaction and Strong Correlation in DFTB
journal, July 2007

  • Hourahine, B.; Sanna, S.; Aradi, B.
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp070173b

Density functional based calculations for Fen (n⩽32)
journal, February 2005


Treatment of Collinear and Noncollinear Electron Spin within an Approximate Density Functional Based Method
journal, July 2007

  • Köhler, Christof; Frauenheim, Thomas; Hourahine, Ben
  • The Journal of Physical Chemistry A, Vol. 111, Issue 26
  • DOI: 10.1021/jp068802p

Full-dimensional, ab initio potential energy and dipole moment surfaces for water
journal, January 2009

  • Wang, Yimin; Shepler, Benjamin C.; Braams, Bastiaan J.
  • The Journal of Chemical Physics, Vol. 131, Issue 5
  • DOI: 10.1063/1.3196178

Permutationally invariant potential energy surfaces in high dimensionality
journal, October 2009

  • Braams, Bastiaan J.; Bowman, Joel M.
  • International Reviews in Physical Chemistry, Vol. 28, Issue 4
  • DOI: 10.1080/01442350903234923

Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer
journal, March 2011

  • Wang, Yimin; Huang, Xinchuan; Shepler, Benjamin C.
  • The Journal of Chemical Physics, Vol. 134, Issue 9
  • DOI: 10.1063/1.3554905

Development of a Reactive Force Field for Iron−Oxyhydroxide Systems
journal, June 2010

  • Aryanpour, Masoud; van Duin, Adri C. T.; Kubicki, James D.
  • The Journal of Physical Chemistry A, Vol. 114, Issue 21
  • DOI: 10.1021/jp101332k

Constructing high-dimensional neural network potentials: A tutorial review
journal, March 2015

  • Behler, Jörg
  • International Journal of Quantum Chemistry, Vol. 115, Issue 16
  • DOI: 10.1002/qua.24890

Perspective: Machine learning potentials for atomistic simulations
journal, November 2016

  • Behler, Jörg
  • The Journal of Chemical Physics, Vol. 145, Issue 17
  • DOI: 10.1063/1.4966192

A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

The atomic simulation environment—a Python library for working with atoms
journal, June 2017

  • Hjorth Larsen, Ask; Jørgen Mortensen, Jens; Blomqvist, Jakob
  • Journal of Physics: Condensed Matter, Vol. 29, Issue 27
  • DOI: 10.1088/1361-648X/aa680e

An object-oriented scripting interface to a legacy electronic structure code
journal, January 2002

  • Bahn, S. R.; Jacobsen, K. W.
  • Computing in Science & Engineering, Vol. 4, Issue 3
  • DOI: 10.1109/5992.998641

Improved initial guess for minimum energy path calculations
journal, June 2014

  • Smidstrup, Søren; Pedersen, Andreas; Stokbro, Kurt
  • The Journal of Chemical Physics, Vol. 140, Issue 21
  • DOI: 10.1063/1.4878664

Kinetic Monte Carlo simulations of Pd deposition and island growth on MgO(100)
journal, July 2007


Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: A combined experimental and theoretical modeling study
journal, May 2010


Works referencing / citing this record:

Synthesis of functionalized nitrogen-containing polycyclic aromatic hydrocarbons and other prebiotic compounds in impacting glycine solutions
journal, January 2019

  • Kroonblawd, Matthew P.; Lindsey, Rebecca K.; Goldman, Nir
  • Chemical Science, Vol. 10, Issue 24
  • DOI: 10.1039/c9sc00155g