DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithiation of Magnetite (Fe3O4): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy

Abstract

Conversion electrodes, such as magnetite (Fe3O4), offer high theoretical capacities (>900 mAh/g) because of multiple electron transfer per metal center. Capacity retention for conversion electrodes has been a challenge in part because of the formation of an insulating surface electrolyte interphase (SEI). This paper provides the first detailed analysis of the lithiation of Fe3O4 using isothermal microcalorimetry (IMC). The measured heat flow was compared with heat contributions predicted from heats of formation for the Faradaic reaction, cell polarization, and entropic contributions. The total measured energy output of the cell (7260 J/g Fe3O4) exceeded the heat of reaction predicted for full lithiation of Fe3O4 (5508 J/g). During initial lithiation (3.0–0.86 V), the heat flow was successfully modeled using polarization and entropic contributions. Heat flow at lower voltage (0.86–0.03 V) exceeded the predicted values for iron oxide reduction, consistent with heat generation attributable to electrolyte decomposition and surface electrolyte interphase (SEI). Operando X-ray absorption spectroscopy (XAS) indicated that the oxidation state of the Fe centers deviated from predicted values beginning at ~0.86 V, supportive of SEI onset in this voltage range. Finally and thus, these combined results from electrochemistry, IMC, and XAS indicate parasitic reactions consistent with SEI formation at a moderatemore » voltage and illustrate an approach for deconvoluting Faradaic and non-Faradaic contributions to heat, which should be broadly applicable to the study of energy-storage materials and systems.« less

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [4]
  1. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Energy Sciences Directorate
  3. Stony Brook Univ., NY (United States). Dept. of Chemistry
  4. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering. Dept. of Chemistry; Brookhaven National Lab. (BNL), Upton, NY (United States). Energy Sciences Directorate
  5. Stony Brook Univ., NY (United States). Dept. of Materials Science and Chemical Engineering. Dept. of Chemistry
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1466641
Report Number(s):
BNL-207937-2018-JAAM
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
SC0012704; SC0012673
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 19; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Huie, Matthew M., Bock, David C., Wang, Lei, Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Lithiation of Magnetite (Fe3O4): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b01681.
Huie, Matthew M., Bock, David C., Wang, Lei, Marschilok, Amy C., Takeuchi, Kenneth J., & Takeuchi, Esther S. Lithiation of Magnetite (Fe3O4): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy. United States. https://doi.org/10.1021/acs.jpcc.8b01681
Huie, Matthew M., Bock, David C., Wang, Lei, Marschilok, Amy C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Thu . "Lithiation of Magnetite (Fe3O4): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy". United States. https://doi.org/10.1021/acs.jpcc.8b01681. https://www.osti.gov/servlets/purl/1466641.
@article{osti_1466641,
title = {Lithiation of Magnetite (Fe3O4): Analysis Using Isothermal Microcalorimetry and Operando X-ray Absorption Spectroscopy},
author = {Huie, Matthew M. and Bock, David C. and Wang, Lei and Marschilok, Amy C. and Takeuchi, Kenneth J. and Takeuchi, Esther S.},
abstractNote = {Conversion electrodes, such as magnetite (Fe3O4), offer high theoretical capacities (>900 mAh/g) because of multiple electron transfer per metal center. Capacity retention for conversion electrodes has been a challenge in part because of the formation of an insulating surface electrolyte interphase (SEI). This paper provides the first detailed analysis of the lithiation of Fe3O4 using isothermal microcalorimetry (IMC). The measured heat flow was compared with heat contributions predicted from heats of formation for the Faradaic reaction, cell polarization, and entropic contributions. The total measured energy output of the cell (7260 J/g Fe3O4) exceeded the heat of reaction predicted for full lithiation of Fe3O4 (5508 J/g). During initial lithiation (3.0–0.86 V), the heat flow was successfully modeled using polarization and entropic contributions. Heat flow at lower voltage (0.86–0.03 V) exceeded the predicted values for iron oxide reduction, consistent with heat generation attributable to electrolyte decomposition and surface electrolyte interphase (SEI). Operando X-ray absorption spectroscopy (XAS) indicated that the oxidation state of the Fe centers deviated from predicted values beginning at ~0.86 V, supportive of SEI onset in this voltage range. Finally and thus, these combined results from electrochemistry, IMC, and XAS indicate parasitic reactions consistent with SEI formation at a moderate voltage and illustrate an approach for deconvoluting Faradaic and non-Faradaic contributions to heat, which should be broadly applicable to the study of energy-storage materials and systems.},
doi = {10.1021/acs.jpcc.8b01681},
journal = {Journal of Physical Chemistry. C},
number = 19,
volume = 122,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Design and Preparation of Materials for Advanced Electrochemical Storage
journal, June 2012

  • Melot, Brent C.; Tarascon, J. -M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300088q

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

In vitro toxicity of nanoparticles in BRL 3A rat liver cells
journal, October 2005


Electron Transfer: Insights into Ionic Transport and Structural Changes in Magnetite during Multiple-Electron Transfer Reactions (Adv. Energy Mater. 10/2016)
journal, May 2016

  • Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201670061

The solid-state electrochemical reduction process of magnetite in Li batteries: in situ magnetic measurements toward electrochemical magnets
journal, January 2014

  • Yamada, Tetsuya; Morita, Kantaro; Kume, Keita
  • J. Mater. Chem. C, Vol. 2, Issue 26
  • DOI: 10.1039/C4TC00299G

Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: The impact on electrochemical capacity
journal, April 2013


Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Self-Assembled Fe 3 O 4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement
journal, August 2013

  • Lee, Soo Hong; Yu, Seung-Ho; Lee, Ji Eun
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl401952h

On the origin of the extra capacity at low potential in materials for Li batteries reacting through conversion reaction
journal, February 2012


Silicon Solid Electrolyte Interphase (SEI) of Lithium Ion Battery Characterized by Microscopy and Spectroscopy
journal, June 2013

  • Nie, Mengyun; Abraham, Daniel P.; Chen, Yanjing
  • The Journal of Physical Chemistry C, Vol. 117, Issue 26
  • DOI: 10.1021/jp404155y

Contribution of X-ray Photoelectron Spectroscopy to the Study of the Electrochemical Reactivity of CoO toward Lithium
journal, March 2004

  • Dedryvère, R.; Laruelle, S.; Grugeon, S.
  • Chemistry of Materials, Vol. 16, Issue 6
  • DOI: 10.1021/cm0311269

Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
journal, March 2008


Mass Spectrometry Investigations on Electrolyte Degradation Products for the Development of Nanocomposite Electrodes in Lithium Ion Batteries
journal, June 2006

  • Gireaud, Laurent; Grugeon, Sylvie; Pilard, Serge
  • Analytical Chemistry, Vol. 78, Issue 11
  • DOI: 10.1021/ac051987w

Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

Origin of additional capacities in metal oxide lithium-ion battery electrodes
journal, November 2013

  • Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan
  • Nature Materials, Vol. 12, Issue 12
  • DOI: 10.1038/nmat3784

Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell
journal, October 2016


In Situ Studies of Li[sub x]Mn[sub 2]O[sub 4] and Li[sub x]Al[sub 0.17]Mn[sub 1.83]O[sub 3.97]S[sub 0.03] Cathode by IMC
journal, January 2005

  • Bang, Hyunjoo; Yang, Hui; Sun, Yang Kook
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1851035

In-Situ Thermal Investigation of LiMn2O4/Li4Ti5O12 Lithium Ion Cells
journal, September 2007

  • Joachin, Humberto H.; Amiruddin, Shabab; Li, Bing
  • ECS Transactions, Vol. 11, Issue 19
  • DOI: 10.1149/1.2897968

Thermal Characteristics of Li[sub x]Mn[sub 2]O[sub 4] Spinel
journal, January 2001

  • Kim, Jeom-Soo; Prakash, Jai; Selman, J. R.
  • Electrochemical and Solid-State Letters, Vol. 4, Issue 9
  • DOI: 10.1149/1.1387224

Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors
journal, January 2014

  • Liu, Guangming; Ouyang, Minggao; Lu, Languang
  • Journal of Thermal Analysis and Calorimetry, Vol. 116, Issue 2
  • DOI: 10.1007/s10973-013-3599-9

Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell
journal, December 2007


Thermo-electrochemical study on cathode materials for lithium ion cells
journal, April 2015

  • Song, Liubin; Xiao, Zhongliang; Li, Lingjun
  • Journal of Solid State Electrochemistry, Vol. 19, Issue 7
  • DOI: 10.1007/s10008-015-2852-5

Thermo-electrochemical study on LiMn2O4 lithium-ion cells during charge–discharge process
journal, December 2013


Electrochemical and Thermal Studies of Carbon-Coated LiFePO[sub 4] Cathode
journal, January 2009

  • Joachin, Humberto; Kaun, Thomas D.; Zaghib, Karim
  • Journal of The Electrochemical Society, Vol. 156, Issue 6
  • DOI: 10.1149/1.3106121

Room-temperature miscibility gap in LixFePO4
journal, April 2006

  • Yamada, Atsuo; Koizumi, Hiroshi; Nishimura, Shin-ichi
  • Nature Materials, Vol. 5, Issue 5
  • DOI: 10.1038/nmat1634

Particle-Size Effects on the Entropy Behavior of a Li x FePO 4 Electrode
journal, April 2014


Thermal Stabilities of Some Lithium Salts and Their Electrolyte Solutions With and Without Contact to a LiFePO[sub 4] Electrode
journal, January 2010

  • Ping, Ping; Wang, Qingsong; Sun, Jinhua
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3473789

Thermal characterization of a high-power lithium-ion battery: Potentiometric and calorimetric measurement of entropy changes
journal, November 2013


Study of the Failure Mechanisms of LiNi 0.8 Mn 0.1 Co 0.1 O 2 Cathode Material for Lithium Ion Batteries
journal, January 2015

  • Li, Jing; Downie, Laura E.; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.1011507jes

Electrochemical and Thermal Investigation of Li[sub 4∕3]Ti[sub 5∕3]O[sub 4] Spinel
journal, January 2007

  • Lu, W.; Belharouak, I.; Liu, J.
  • Journal of The Electrochemical Society, Vol. 154, Issue 2
  • DOI: 10.1149/1.2402117

Isothermal calorimetry investigation of Li1+xMn2−yAlzO4 spinel
journal, May 2007


Comparative study of thermal behaviors of various lithium-ion cells
journal, July 2001


Determination of the Voltage Dependence of Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry
journal, January 2014

  • Downie, L. E.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 161, Issue 12
  • DOI: 10.1149/2.0301412jes

The Impact of Electrolyte Composition on Parasitic Reactions in Lithium Ion Cells Charged to 4.7 V Determined Using Isothermal Microcalorimetry
journal, November 2015

  • Downie, L. E.; Hyatt, S. R.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 163, Issue 2
  • DOI: 10.1149/2.0081602jes

Determination of the Time Dependent Parasitic Heat Flow in Lithium Ion Cells Using Isothermal Microcalorimetry
journal, December 2014

  • Downie, L. E.; Hyatt, S. R.; Wright, A. T. B.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 51
  • DOI: 10.1021/jp508912z

Effects of Fluorinated Carbonate Solvent Blends on High Voltage Parasitic Reactions in Lithium Ion Cells Using OCV Isothermal Microcalorimetry
journal, January 2016

  • Glazier, S. L.; Downie, L. E.; Xia, J.
  • Journal of The Electrochemical Society, Vol. 163, Issue 10
  • DOI: 10.1149/2.0081610jes

The Impact of Electrolyte Additives Determined Using Isothermal Microcalorimetry
journal, January 2013

  • Downie, L. E.; Nelson, K. J.; Petibon, R.
  • ECS Electrochemistry Letters, Vol. 2, Issue 10
  • DOI: 10.1149/2.010310eel

Surface-Electrolyte Interphase Formation in Lithium-Ion Cells Containing Pyridine Adduct Additives
journal, January 2016

  • Hall, David S.; Nie, Mengyun; D. Ellis, Leah
  • Journal of The Electrochemical Society, Vol. 163, Issue 5
  • DOI: 10.1149/2.1091605jes

Measurement of Parasitic Reactions in Li Ion Cells by Electrochemical Calorimetry
journal, January 2012

  • Krause, L. J.; Jensen, L. D.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 159, Issue 7
  • DOI: 10.1149/2.021207jes

Deliberate modification of the solid electrolyte interphase (SEI) during lithiation of magnetite, Fe 3 O 4 : impact on electrochemistry
journal, January 2017

  • Bock, David C.; Marschilok, Amy C.; Takeuchi, Kenneth J.
  • Chemical Communications, Vol. 53, Issue 98
  • DOI: 10.1039/C7CC07142F

Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature
journal, September 2007

  • Martínez-Mera, I.; Espinosa-Pesqueira, M. E.; Pérez-Hernández, R.
  • Materials Letters, Vol. 61, Issue 23-24
  • DOI: 10.1016/j.matlet.2007.02.018

Crystallite Size Control and Resulting Electrochemistry of Magnetite, Fe[sub 3]O[sub 4]
journal, January 2009

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3078076

Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3478667

Cycling-Induced Changes in the Entropy Profiles of Lithium Cobalt Oxide Electrodes
journal, December 2014

  • Hudak, Nicholas S.; Davis, Lorie E.; Nagasubramanian, Ganesan
  • Journal of The Electrochemical Society, Vol. 162, Issue 3
  • DOI: 10.1149/2.0071503jes

Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments
journal, January 2015

  • Knehr, K. W.; Brady, Nicholas W.; Cama, Christina A.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0961514jes

IFEFFIT  : interactive XAFS analysis and FEFF fitting
journal, March 2001


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Theoretical x-ray absorption fine structure standards
journal, July 1991

  • Rehr, J. J.; Mustre de Leon, J.; Zabinsky, S. I.
  • Journal of the American Chemical Society, Vol. 113, Issue 14
  • DOI: 10.1021/ja00014a001

The structure of magnetite: two annealed natural magnetites, Fe3.005O4 and Fe2.96Mg0.04O4
journal, September 1984

  • Fleet, M. E.
  • Acta Crystallographica Section C Crystal Structure Communications, Vol. 40, Issue 9
  • DOI: 10.1107/S0108270184008489

An X‐Ray Study of the Wüstite (FeO) Solid Solutions
journal, January 1933

  • Jette, Eric R.; Foote, Frank
  • The Journal of Chemical Physics, Vol. 1, Issue 1
  • DOI: 10.1063/1.1749215

XLI. Precision measurements of crystal parameters
journal, February 1933

  • Owen, E. A.; Yates, E. L.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 15, Issue 98
  • DOI: 10.1080/14786443309462199

NIST–JANAF Thermochemical Tables for the Bromine Oxides
journal, July 1996

  • Chase, M. W.
  • Journal of Physical and Chemical Reference Data, Vol. 25, Issue 4
  • DOI: 10.1063/1.555993

A General Energy Balance for Battery Systems
journal, January 1985

  • Bernardi, D.
  • Journal of The Electrochemical Society, Vol. 132, Issue 1
  • DOI: 10.1149/1.2113792

Heat-Generation Rate and General Energy Balance for Insertion Battery Systems
journal, January 1997

  • Rao, Lin
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837884

Electroanalytical study of the viability of conversion reactions as energy storage mechanisms
journal, January 2014

  • Ponrouch, Alexandre; Cabana, Jordi; Dugas, Romain
  • RSC Adv., Vol. 4, Issue 68
  • DOI: 10.1039/C4RA05189K

High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications
journal, June 2006

  • Taberna, P. L.; Mitra, S.; Poizot, P.
  • Nature Materials, Vol. 5, Issue 7, p. 567-573
  • DOI: 10.1038/nmat1672

A critical review-promises and barriers of conversion electrodes for Li-ion batteries
journal, April 2017

  • Kraytsberg, Alexander; Ein-Eli, Yair
  • Journal of Solid State Electrochemistry, Vol. 21, Issue 7
  • DOI: 10.1007/s10008-017-3580-9

Designing the next generation high capacity battery electrodes
journal, January 2014

  • Yu, H. -C.; Ling, C.; Bhattacharya, J.
  • Energy & Environmental Science, Vol. 7, Issue 5
  • DOI: 10.1039/c3ee43154a

Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide
journal, January 2001

  • Thomas, Karen E.; Bogatu, Christian; Newman, John
  • Journal of The Electrochemical Society, Vol. 148, Issue 6
  • DOI: 10.1149/1.1369365

Galvanostatic interruption of lithium insertion into magnetite: Evidence of surface layer formation
journal, July 2016


Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries
journal, January 2008


EIS study on the formation of solid electrolyte interface in Li-ion battery
journal, January 2006


Dispersion of Nanocrystalline Fe 3 O 4 within Composite Electrodes: Insights on Battery-Related Electrochemistry
journal, April 2016

  • Bock, David C.; Pelliccione, Christopher J.; Zhang, Wei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 18
  • DOI: 10.1021/acsami.6b01134

Reversible reduction of Li 2 CO 3
journal, January 2015

  • Tian, Na; Hua, Chunxiu; Wang, Zhaoxiang
  • Journal of Materials Chemistry A, Vol. 3, Issue 27
  • DOI: 10.1039/C5TA02499D

Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites
journal, January 2010

  • Gmitter, Andrew J.; Badway, Fadwa; Rangan, Sylvie
  • Journal of Materials Chemistry, Vol. 20, Issue 20
  • DOI: 10.1039/b923908a

Searching for new anode materials for the Li-ion technology: time to deviate from the usual path
journal, July 2001


An update on the reactivity of nanoparticles Co-based compounds towards Li
journal, June 2003


On the Origin of the Extra Electrochemical Capacity Displayed by MO/Li Cells at Low Potential
journal, January 2002

  • Laruelle, S.; Grugeon, S.; Poizot, P.
  • Journal of The Electrochemical Society, Vol. 149, Issue 5, p. A627-A634
  • DOI: 10.1149/1.1467947

Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes
journal, January 2012

  • Lee, Ji Eun; Yu, Seung-Ho; Lee, Dong Jun
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22792d

Sandwich-Structured Graphene-Fe 3 O 4 @Carbon Nanocomposites for High-Performance Lithium-Ion Batteries
journal, April 2015

  • Zhao, Li; Gao, Miaomiao; Yue, Wenbo
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01503

Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries
journal, January 2009

  • Muraliganth, Theivanayagam; Vadivel Murugan, Arumugam; Manthiram, Arumugam
  • Chemical Communications, Issue 47
  • DOI: 10.1039/b916376j

Works referencing / citing this record:

Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Li‐rich Phases (Li 1+ x Al) on Capacity Fading
journal, April 2019


The Systematic Refinement for the Phase Change and Conversion Reactions Arising from the Lithiation of Magnetite Nanocrystals
journal, November 2019

  • Lininger, Christianna N.; Bruck, Andrea M.; Lutz, Diana M.
  • Advanced Functional Materials, Vol. 30, Issue 5
  • DOI: 10.1002/adfm.201907337

Revisiting the Electrochemical Lithiation Mechanism of Aluminum and the Role of Li‐rich Phases (Li 1+ x Al) on Capacity Fading
journal, May 2019