skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite

Abstract

The selectivity of CO2 hydrogenation can be significantly tuned by controlling the valence state of nickel using lanthanum-iron-nickel perovskites. Nickel with higher valence states weakens the binding of CO and increases the activation barrier for further CO hydrogenation, leading to a higher CO selectivity than the metallic nickel.

Authors:
 [1];  [1];  [2];  [3]; ORCiD logo [3]; ORCiD logo [4];  [5]; ORCiD logo [3];  [5]; ORCiD logo [6]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States); Tsinghua Univ., Beijing (China)
  2. Columbia Univ., New York, NY (United States)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States)
  4. Stony Brook Univ., NY (United States)
  5. Tsinghua Univ., Beijing (China)
  6. Brookhaven National Lab. (BNL), Upton, NY (United States); Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1466617
Alternate Identifier(s):
OSTI ID: 1454637
Report Number(s):
BNL-207967-2018-JAAM
Journal ID: ISSN 1359-7345; CHCOFS
Grant/Contract Number:  
SC0012704; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 54; Journal Issue: 53; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY

Citation Formats

Zhao, Baohuai, Yan, Binhang, Jiang, Zhao, Yao, Siyu, Liu, Zongyuan, Wu, Qiyuan, Ran, Rui, Senanayake, Sanjaya D., Weng, Duan, and Chen, Jingguang G. High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite. United States: N. p., 2018. Web. doi:10.1039/C8CC03829E.
Zhao, Baohuai, Yan, Binhang, Jiang, Zhao, Yao, Siyu, Liu, Zongyuan, Wu, Qiyuan, Ran, Rui, Senanayake, Sanjaya D., Weng, Duan, & Chen, Jingguang G. High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite. United States. doi:10.1039/C8CC03829E.
Zhao, Baohuai, Yan, Binhang, Jiang, Zhao, Yao, Siyu, Liu, Zongyuan, Wu, Qiyuan, Ran, Rui, Senanayake, Sanjaya D., Weng, Duan, and Chen, Jingguang G. Mon . "High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite". United States. doi:10.1039/C8CC03829E. https://www.osti.gov/servlets/purl/1466617.
@article{osti_1466617,
title = {High selectivity of CO2 hydrogenation to CO by controlling the valence state of nickel using perovskite},
author = {Zhao, Baohuai and Yan, Binhang and Jiang, Zhao and Yao, Siyu and Liu, Zongyuan and Wu, Qiyuan and Ran, Rui and Senanayake, Sanjaya D. and Weng, Duan and Chen, Jingguang G.},
abstractNote = {The selectivity of CO2 hydrogenation can be significantly tuned by controlling the valence state of nickel using lanthanum-iron-nickel perovskites. Nickel with higher valence states weakens the binding of CO and increases the activation barrier for further CO hydrogenation, leading to a higher CO selectivity than the metallic nickel.},
doi = {10.1039/C8CC03829E},
journal = {ChemComm},
number = 53,
volume = 54,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: TEM images and particle size distributions of the spent catalysts (a–c) LaNiO3; (d–f) LaFe0.5Ni0.5O3.

Save / Share:

Works referenced in this record:

Mechanism of CO2 reduction by H2 on Ru(0 0 0 1) and general selectivity descriptors for late-transition metal catalysts
journal, November 2016


Active Site Dependent Reaction Mechanism over Ru/CeO 2 Catalyst toward CO 2 Methanation
journal, May 2016

  • Wang, Fei; He, Shan; Chen, Hao
  • Journal of the American Chemical Society, Vol. 138, Issue 19
  • DOI: 10.1021/jacs.6b02762

Study of bimetallic Cu–Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation
journal, April 1999


CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support
journal, November 2016


Trends in the catalytic reduction of CO2 by hydrogen over supported monometallic and bimetallic catalysts
journal, May 2013


Recent advances in catalytic hydrogenation of carbon dioxide
journal, January 2011

  • Wang, Wei; Wang, Shengping; Ma, Xinbin
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c1cs15008a

Hydrogen from biogas: Catalytic tri-reforming process with Ni/LaCeO mixed oxides
journal, April 2014


Methanation of CO 2 and reverse water gas shift reactions on Ni/SiO 2 catalysts: the influence of particle size on selectivity and reaction pathway
journal, January 2015

  • Wu, H. C.; Chang, Y. C.; Wu, J. H.
  • Catalysis Science & Technology, Vol. 5, Issue 8
  • DOI: 10.1039/C5CY00667H

Catalytic reduction of CO 2 by H 2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities
journal, January 2016

  • Porosoff, Marc D.; Yan, Binhang; Chen, Jingguang G.
  • Energy & Environmental Science, Vol. 9, Issue 1
  • DOI: 10.1039/C5EE02657A

Effect of the structure of Ni/TiO2 catalyst on CO2 methanation
journal, December 2016


Selective hydrogenation of CO 2 into CO on a highly dispersed nickel catalyst obtained by magnetron sputtering deposition: A step towards liquid fuels
journal, July 2017

  • Gonçalves, Renato V.; Vono, Lucas L. R.; Wojcieszak, Robert
  • Applied Catalysis B: Environmental, Vol. 209
  • DOI: 10.1016/j.apcatb.2017.02.081

Tuning Selectivity of CO 2 Hydrogenation Reactions at the Metal/Oxide Interface
journal, July 2017

  • Kattel, Shyam; Liu, Ping; Chen, Jingguang G.
  • Journal of the American Chemical Society, Vol. 139, Issue 29
  • DOI: 10.1021/jacs.7b05362

Optimizing Binding Energies of Key Intermediates for CO 2 Hydrogenation to Methanol over Oxide-Supported Copper
journal, September 2016

  • Kattel, Shyam; Yan, Binhang; Yang, Yixiong
  • Journal of the American Chemical Society, Vol. 138, Issue 38
  • DOI: 10.1021/jacs.6b05791

CO 2 Hydrogenation over Oxide-Supported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity
journal, May 2016

  • Kattel, Shyam; Yu, Weiting; Yang, Xiaofang
  • Angewandte Chemie International Edition, Vol. 55, Issue 28
  • DOI: 10.1002/anie.201601661

Mechanisms of Hydrogen-Assisted CO 2 Reduction on Nickel
journal, March 2017

  • Lin, Wei; Stocker, Kelsey M.; Schatz, George C.
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.7b01538

Structural Reversibility and Nickel Particle stability in Lanthanum Iron Nickel Perovskite-Type Catalysts
journal, May 2017

  • Steiger, Patrick; Delmelle, Renaud; Foppiano, Debora
  • ChemSusChem, Vol. 10, Issue 11
  • DOI: 10.1002/cssc.201700358

Direct observation of Ni 3+ and Ni 2+ in correlated LaNiO 3−δ films
journal, March 2011


XPS study of the surface properties and Ni particle size determination of Ni-supported catalysts: Surface properties and Ni particle size determination of Ni catalysts
journal, June 2014

  • Tarditi, Ana M.; Barroso, Noelia; Galetti, Agustín E.
  • Surface and Interface Analysis, Vol. 46, Issue 8
  • DOI: 10.1002/sia.5549

Electrochemical property assessment of Sr-doped LaNi0.5Mn0.5O3− as cathode for intermediate-temperature solid oxide fuel cells
journal, December 2016


Recycling of CO 2 : Probing the Chemical State of the Ni(111) Surface during the Methanation Reaction with Ambient-Pressure X-Ray Photoelectron Spectroscopy
journal, September 2016

  • Heine, Christian; Lechner, Barbara A. J.; Bluhm, Hendrik
  • Journal of the American Chemical Society, Vol. 138, Issue 40
  • DOI: 10.1021/jacs.6b06939

Ni–perovskite interaction and its structural and catalytic consequences in methane steam reforming and methanation reactions
journal, May 2016


Catalytic behavior of metal catalysts in high-temperature RWGS reaction: In-situ FT-IR experiments and first-principles calculations
journal, January 2017

  • Choi, Sungjun; Sang, Byoung-In; Hong, Jongsup
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41207

Carbon dioxide hydrogenation on potassium-promoted nickel catalysts
journal, May 1989


Methanation of CO2: Structural response of a Ni-based catalyst under fluctuating reaction conditions unraveled by operando spectroscopy
journal, July 2015


Absence of Ni on the outer surface of Sr doped La 2 NiO 4 single crystals
journal, January 2014

  • Burriel, Mónica; Wilkins, Stuart; Hill, John P.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE41622D

Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution
journal, September 2015

  • Neagu, Dragos; Oh, Tae-Sik; Miller, David N.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9120

Oxidative Methane Reforming with an Intelligent Catalyst: Sintering-Tolerant Supported Nickel Nanoparticles
journal, October 2013


    Works referencing / citing this record:

    Cooperative Co 0 /Co II Sites Stabilized by a Perovskite Matrix Enable Selective C−O and C−C bond Hydrogenolysis of Oxygenated Arenes
    journal, April 2019

    • Shetty, Manish; Zanchet, Daniela; Green, William H.
    • ChemSusChem, Vol. 12, Issue 10
    • DOI: 10.1002/cssc.201900664

    Hydrogenation of Carbon Dioxide to Value-Added Chemicals by Heterogeneous Catalysis and Plasma Catalysis
    journal, March 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.