DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics

Abstract

The ability to manipulate quantum dot (QD) surfaces is foundational to their technological deployment. Surface manipulation of metal halide perovskite (MHP) QDs has proven particularly challenging in comparison to that of more established inorganic materials due to dynamic surface species and low material formation energy; most conventional methods of chemical manipulation targeted at the MHP QD surface will result in transformation or dissolution of the MHP crystal. In previous work, we have demonstrated record-efficiency QD solar cells (QDSCs) based on ligand-exchange procedures that electronically couple MHP QDs yet maintain their nanocrystalline size, which stabilizes the corner-sharing structure of the constituent PbI64-octahedra with optoelectronic properties optimal for solar energy conversion. In this work, we employ a variety of spectroscopic techniques to develop a molecular-level understanding of the MHP QD surface chemistry in this system. We individually target both the anionic (oleate) and cationic (oleylammonium) ligands. We find that atmospheric moisture aids the process by hydrolysis of methyl acetate to generate acetic acid and methanol. Acetic acid then replaces native oleate ligands to yield QD surface-bound acetate and free oleic acid. The native oleylammonium ligands remain throughout this film deposition process and are exchanged during a final treatment step employing smaller cationsmore » - namely, formamidinium. This final treatment has a narrow processing window; initial treatment at this stage leads to a more strongly coupled QD regime followed by transformation into a bulk MHP film after longer treatment. These insights provide chemical understanding to the deposition of high-quality, electronically coupled MHP QD films that maintain both quantum confinement and their crystalline phase and attain high photovoltaic performance.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [1]; ORCiD logo [1];  [6];  [6];  [6]; ORCiD logo [1];  [1]; ORCiD logo [7]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Washington, Seattle, WA (United States)
  3. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  4. National Renewable Energy Lab. (NREL), Golden, CO (United States); Inst. Photovoltaique d’Île de France (IPVF), Palaiseau (France)
  5. Univ. of Texas, Austin, TX (United States)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  7. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Advanced Solar Photophysics (CASP); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office
OSTI Identifier:
1466557
Report Number(s):
NREL/JA-5900-71521
Journal ID: ISSN 0002-7863
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 33; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY; atmospheric moisture; chemical manipulation; film-deposition process; nanocrystalline size; optoelectronic properties; photovoltaic performance; spectroscopic technique; surface manipulation

Citation Formats

Wheeler, Lance M., Sanehira, Erin M., Marshall, Ashley R., Schulz, Philip, Suri, Mokshin, Anderson, Nicholas C., Christians, Jeffrey A., Nordlund, Dennis, Sokaras, Dimosthenis, Kroll, Thomas, Harvey, Steven P., Berry, Joseph J., Lin, Lih Y., and Luther, Joseph M. Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. United States: N. p., 2018. Web. doi:10.1021/jacs.8b04984.
Wheeler, Lance M., Sanehira, Erin M., Marshall, Ashley R., Schulz, Philip, Suri, Mokshin, Anderson, Nicholas C., Christians, Jeffrey A., Nordlund, Dennis, Sokaras, Dimosthenis, Kroll, Thomas, Harvey, Steven P., Berry, Joseph J., Lin, Lih Y., & Luther, Joseph M. Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. United States. https://doi.org/10.1021/jacs.8b04984
Wheeler, Lance M., Sanehira, Erin M., Marshall, Ashley R., Schulz, Philip, Suri, Mokshin, Anderson, Nicholas C., Christians, Jeffrey A., Nordlund, Dennis, Sokaras, Dimosthenis, Kroll, Thomas, Harvey, Steven P., Berry, Joseph J., Lin, Lih Y., and Luther, Joseph M. Wed . "Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics". United States. https://doi.org/10.1021/jacs.8b04984. https://www.osti.gov/servlets/purl/1466557.
@article{osti_1466557,
title = {Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics},
author = {Wheeler, Lance M. and Sanehira, Erin M. and Marshall, Ashley R. and Schulz, Philip and Suri, Mokshin and Anderson, Nicholas C. and Christians, Jeffrey A. and Nordlund, Dennis and Sokaras, Dimosthenis and Kroll, Thomas and Harvey, Steven P. and Berry, Joseph J. and Lin, Lih Y. and Luther, Joseph M.},
abstractNote = {The ability to manipulate quantum dot (QD) surfaces is foundational to their technological deployment. Surface manipulation of metal halide perovskite (MHP) QDs has proven particularly challenging in comparison to that of more established inorganic materials due to dynamic surface species and low material formation energy; most conventional methods of chemical manipulation targeted at the MHP QD surface will result in transformation or dissolution of the MHP crystal. In previous work, we have demonstrated record-efficiency QD solar cells (QDSCs) based on ligand-exchange procedures that electronically couple MHP QDs yet maintain their nanocrystalline size, which stabilizes the corner-sharing structure of the constituent PbI64-octahedra with optoelectronic properties optimal for solar energy conversion. In this work, we employ a variety of spectroscopic techniques to develop a molecular-level understanding of the MHP QD surface chemistry in this system. We individually target both the anionic (oleate) and cationic (oleylammonium) ligands. We find that atmospheric moisture aids the process by hydrolysis of methyl acetate to generate acetic acid and methanol. Acetic acid then replaces native oleate ligands to yield QD surface-bound acetate and free oleic acid. The native oleylammonium ligands remain throughout this film deposition process and are exchanged during a final treatment step employing smaller cations - namely, formamidinium. This final treatment has a narrow processing window; initial treatment at this stage leads to a more strongly coupled QD regime followed by transformation into a bulk MHP film after longer treatment. These insights provide chemical understanding to the deposition of high-quality, electronically coupled MHP QD films that maintain both quantum confinement and their crystalline phase and attain high photovoltaic performance.},
doi = {10.1021/jacs.8b04984},
journal = {Journal of the American Chemical Society},
number = 33,
volume = 140,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Figures / Tables:

Scheme 1 Scheme 1: (a) Hydrolysis of an Ester To Yield a Carboxylic Acid and an Alcohol; (b) Anionic Carboxylate Ligand-Exchange Reaction Observed in CsPbI3 Thin Films and Solutions; (c) Cationic Ligand Exchange Observed in CsPbI3 Thin Films

Save / Share:

Works referenced in this record:

Metal halide perovskites for energy applications
journal, May 2016


Nanocrystals of Cesium Lead Halide Perovskites (CsPbX 3 , X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
journal, February 2015

  • Protesescu, Loredana; Yakunin, Sergii; Bodnarchuk, Maryna I.
  • Nano Letters, Vol. 15, Issue 6
  • DOI: 10.1021/nl5048779

Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions
journal, August 2015

  • Akkerman, Quinten A.; D’Innocenzo, Valerio; Accornero, Sara
  • Journal of the American Chemical Society, Vol. 137, Issue 32
  • DOI: 10.1021/jacs.5b05602

Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals
journal, January 2016


Silyl Radical Abstraction in the Functionalization of Plasma-Synthesized Silicon Nanocrystals
journal, September 2015

  • Wheeler, Lance M.; Anderson, Nicholas C.; Palomaki, Peter K. B.
  • Chemistry of Materials, Vol. 27, Issue 19, p. 6869-6878
  • DOI: 10.1021/acs.chemmater.5b03309

Characterization of Silicon Nanocrystal Surfaces by Multidimensional Solid-State NMR Spectroscopy
journal, November 2017


Tunable Band Gap Emission and Surface Passivation of Germanium Nanocrystals Synthesized in the Gas Phase
journal, September 2013

  • Wheeler, Lance M.; Levij, Laszlo M.; Kortshagen, Uwe R.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz401576b

All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange
journal, January 2016


Reaction Chemistry and Ligand Exchange at Cadmium−Selenide Nanocrystal Surfaces
journal, September 2008

  • Owen, Jonathan S.; Park, Jungwon; Trudeau, Paul-Emile
  • Journal of the American Chemical Society, Vol. 130, Issue 37
  • DOI: 10.1021/ja804414f

Tight Binding of Carboxylate, Phosphonate, and Carbamate Anions to Stoichiometric CdSe Nanocrystals
journal, February 2017

  • Chen, Peter E.; Anderson, Nicholas C.; Norman, Zachariah M.
  • Journal of the American Chemical Society, Vol. 139, Issue 8
  • DOI: 10.1021/jacs.6b13234

Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2–, HS, Se2–, HSe, Te2–, HTe, TeS32–, OH, and NH2– as Surface Ligands
journal, July 2011

  • Nag, Angshuman; Kovalenko, Maksym V.; Lee, Jong-Soo
  • Journal of the American Chemical Society, Vol. 133, Issue 27, p. 10612-10620
  • DOI: 10.1021/ja2029415

Colloidal HgTe Nanocrystals with Widely Tunable Narrow Band Gap Energies:  From Telecommunications to Molecular Vibrations
journal, March 2006

  • Kovalenko, Maksym V.; Kaufmann, Erich; Pachinger, Dietmar
  • Journal of the American Chemical Society, Vol. 128, Issue 11
  • DOI: 10.1021/ja058440j

Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

Structural, Optical, and Electrical Properties of Self-Assembled Films of PbSe Nanocrystals Treated with 1,2-Ethanedithiol
journal, January 2008

  • Luther, Joseph M.; Law, Matt; Song, Qing
  • ACS Nano, Vol. 2, Issue 2
  • DOI: 10.1021/nn7003348

Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells
journal, July 2015

  • Marshall, Ashley R.; Young, Matthew R.; Nozik, Arthur J.
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 15
  • DOI: 10.1021/acs.jpclett.5b01214

Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films
journal, May 2017

  • Lin, Qianglu; Yun, Hyeong Jin; Liu, Wenyong
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01327

Phase Stabilized α-CsPbI 3 Perovskite Nanocrystals for Photodiode Applications
journal, November 2017

  • Sim, Kyu Min; Swarnkar, Abhishek; Nag, Angshuman
  • Laser & Photonics Reviews, Vol. 12, Issue 1
  • DOI: 10.1002/lpor.201700209

50-Fold EQE Improvement up to 6.27% of Solution-Processed All-Inorganic Perovskite CsPbBr 3 QLEDs via Surface Ligand Density Control
journal, November 2016


Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr 3 Perovskite Nanocubes
journal, September 2017

  • Ravi, Vikash Kumar; Santra, Pralay K.; Joshi, Niharika
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 20
  • DOI: 10.1021/acs.jpclett.7b02192

Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
journal, February 2018

  • Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.
  • Nature Materials, Vol. 17, Issue 5
  • DOI: 10.1038/s41563-018-0018-4

Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering
journal, August 2016


Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission
journal, December 2015

  • Pan, Jun; Sarmah, Smritakshi P.; Murali, Banavoth
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 24
  • DOI: 10.1021/acs.jpclett.5b02460

Quantum dot-induced phase stabilization of  -CsPbI3 perovskite for high-efficiency photovoltaics
journal, October 2016


Schottky Solar Cells Based on Colloidal Nanocrystal Films
journal, October 2008

  • Luther, Joseph M.; Law, Matt; Beard, Matthew C.
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl802476m

Hybrid passivated colloidal quantum dot solids
journal, July 2012

  • Ip, Alexander H.; Thon, Susanna M.; Hoogland, Sjoerd
  • Nature Nanotechnology, Vol. 7, Issue 9
  • DOI: 10.1038/nnano.2012.127

Quantum Dot Solar Cell Fabrication Protocols
journal, October 2016


Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots
journal, July 2015


Enhanced mobility CsPbI 3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells
journal, October 2017

  • Sanehira, Erin M.; Marshall, Ashley R.; Christians, Jeffrey A.
  • Science Advances, Vol. 3, Issue 10
  • DOI: 10.1126/sciadv.aao4204

Dynamic Evolution of 2D Layers within Perovskite Nanocrystals via Salt Pair Extraction and Reinsertion
journal, December 2017

  • Wheeler, Lance M.; Anderson, Nicholas C.; Bliss, Taylor S.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 25
  • DOI: 10.1021/acs.jpcc.8b01164

FT-IR Characterization of Metal Acetates in Aqueous Solution
journal, March 1989


Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification
journal, May 2017

  • Kroupa, Daniel M.; Vörös, Márton; Brawand, Nicholas P.
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15257

Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions
journal, March 2018


Unveiling the Influence of pH on the Crystallization of Hybrid Perovskites, Delivering Low Voltage Loss Photovoltaics
journal, October 2017


Vapor-liquid equilibria of a slight amount of water in eight organic solvents at atmospheric pressure
journal, April 1985

  • Ikari, Atsushi; Hatate, Yasuo; Futai, Masato
  • Journal of Chemical & Engineering Data, Vol. 30, Issue 2
  • DOI: 10.1021/je00040a009

Efficient Solid-State Electrochemiluminescence from High-Quality Perovskite Quantum Dot Films
journal, July 2017


Piezoelectric and ferroelectric materials and structures for energy harvesting applications
journal, January 2014

  • Bowen, C. R.; Kim, H. A.; Weaver, P. M.
  • Energy Environ. Sci., Vol. 7, Issue 1
  • DOI: 10.1039/C3EE42454E

High-Efficiency Perovskite Quantum-Dot Light-Emitting Devices by Effective Washing Process and Interfacial Energy Level Alignment
journal, May 2017

  • Chiba, Takayuki; Hoshi, Keigo; Pu, Yong-Jin
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 21
  • DOI: 10.1021/acsami.7b03382

Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys
journal, December 2015


Inner-Shell Excitation Spectroscopy of the Peptide Bond:  Comparison of the C 1s, N 1s, and O 1s Spectra of Glycine, Glycyl-Glycine, and Glycyl-Glycyl-Glycine
journal, August 2003

  • Gordon, Michelle L.; Cooper, Glyn; Morin, Cynthia
  • The Journal of Physical Chemistry A, Vol. 107, Issue 32
  • DOI: 10.1021/jp0344390

Self-Alignment of the Methylammonium Cations in Thin-Film Organometal Perovskites
journal, August 2014

  • McLeod, John A.; Wu, Zhongwei; Shen, Pengfei
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 16
  • DOI: 10.1021/jz501472d

Strontium Insertion in Methylammonium Lead Iodide: Long Charge Carrier Lifetime and High Fill-Factor Solar Cells
journal, September 2016

  • Pérez-del-Rey, Daniel; Forgács, Dávid; Hutter, Eline M.
  • Advanced Materials, Vol. 28, Issue 44
  • DOI: 10.1002/adma.201603016

Dependence of Carrier Mobility on Nanocrystal Size and Ligand Length in PbSe Nanocrystal Solids
journal, May 2010

  • Liu, Yao; Gibbs, Markelle; Puthussery, James
  • Nano Letters, Vol. 10, Issue 5
  • DOI: 10.1021/nl101284k

Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide
journal, July 2015

  • Ahn, Namyoung; Son, Dae-Yong; Jang, In-Hyuk
  • Journal of the American Chemical Society, Vol. 137, Issue 27
  • DOI: 10.1021/jacs.5b04930

A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource
journal, May 2013

  • Sokaras, D.; Weng, T. -C.; Nordlund, D.
  • Review of Scientific Instruments, Vol. 84, Issue 5
  • DOI: 10.1063/1.4803669

Works referencing / citing this record:

Charge transfer dynamics in CsPbBr 3 perovskite quantum dots–anthraquinone/fullerene (C 60 ) hybrids
journal, January 2019

  • Mandal, Sadananda; George, Lijo; Tkachenko, Nikolai V.
  • Nanoscale, Vol. 11, Issue 3
  • DOI: 10.1039/c8nr08445a

Spray‐Coated Colloidal Perovskite Quantum Dot Films for Highly Efficient Solar Cells
journal, September 2019

  • Yuan, Jifeng; Bi, Chenghao; Wang, Shixun
  • Advanced Functional Materials, Vol. 29, Issue 49
  • DOI: 10.1002/adfm.201906615

Role of Capped Oleyl Amine in the Moisture‐Induced Structural Transformation of CsPbBr 3 Perovskite Nanocrystals
journal, May 2019

  • Sandeep, K.; Gopika, K. Y.; Revathi, M. R.
  • physica status solidi (RRL) – Rapid Research Letters, Vol. 13, Issue 11
  • DOI: 10.1002/pssr.201900387

Anorganische CsPbX 3 ‐Perowskit‐Solarzellen: Fortschritte und Perspektiven
journal, August 2019


Short‐Chain Ligand‐Passivated Stable α‐CsPbI 3 Quantum Dot for All‐Inorganic Perovskite Solar Cells
journal, April 2019

  • Chen, Keqiang; Zhong, Qiaohui; Chen, Wen
  • Advanced Functional Materials, Vol. 29, Issue 24
  • DOI: 10.1002/adfm.201900991

Managing Energy Loss in Inorganic Lead Halide Perovskites Solar Cells
journal, September 2019

  • Liu, Chongming; Zeng, Qingsen; Yang, Bai
  • Advanced Materials Interfaces, Vol. 6, Issue 22
  • DOI: 10.1002/admi.201901136

High efficiency perovskite quantum dot solar cells with charge separating heterostructure
journal, June 2019


Review on Recent Progress of All‐Inorganic Metal Halide Perovskites and Solar Cells
journal, September 2019


Enhanced photoredox activity of CsPbBr 3 nanocrystals by quantitative colloidal ligand exchange
journal, November 2019

  • Lu, Haipeng; Zhu, Xiaolin; Miller, Collin
  • The Journal of Chemical Physics, Vol. 151, Issue 20
  • DOI: 10.1063/1.5129261

All‐Inorganic CsPbX 3 Perovskite Solar Cells: Progress and Prospects
journal, August 2019

  • Zhang, Jingru; Hodes, Gary; Jin, Zhiwen
  • Angewandte Chemie International Edition, Vol. 58, Issue 44
  • DOI: 10.1002/anie.201901081

Building bridges between halide perovskite nanocrystals and thin-film solar cells
journal, January 2018

  • Yang, Hanjun; Zhang, Yi; Hills-Kimball, Katie
  • Sustainable Energy & Fuels, Vol. 2, Issue 11
  • DOI: 10.1039/c8se00315g

Luminescent perovskite quantum dots: synthesis, microstructures, optical properties and applications
journal, January 2019

  • Chen, Daqin; Chen, Xiao
  • Journal of Materials Chemistry C, Vol. 7, Issue 6
  • DOI: 10.1039/c8tc05545a

Conductivity Tuning via Doping with Electron Donating and Withdrawing Molecules in Perovskite CsPbI 3 Nanocrystal Films
journal, May 2019

  • Gaulding, E. Ashley; Hao, Ji; Kang, Hyun Suk
  • Advanced Materials, Vol. 31, Issue 27
  • DOI: 10.1002/adma.201902250

Observation and implication of halide exchange beyond CsPbX 3 perovskite nanocrystals
journal, January 2019


14.1% CsPbI 3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation
journal, June 2019

  • Ling, Xufeng; Zhou, Sijie; Yuan, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 28
  • DOI: 10.1002/aenm.201900721

Convenient preparation of CsSnI 3 quantum dots, excellent stability, and the highest performance of lead-free inorganic perovskite solar cells so far
journal, January 2019

  • Wang, Yangyang; Tu, Jin; Li, Tianhao
  • Journal of Materials Chemistry A, Vol. 7, Issue 13
  • DOI: 10.1039/c8ta10901j

A Small‐Molecule “Charge Driver” enables Perovskite Quantum Dot Solar Cells with Efficiency Approaching 13%
journal, July 2019


Resurfacing halide perovskite nanocrystals
journal, May 2019


Efficient and stable CsPbI 3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications
journal, January 2019

  • Shi, Junwei; Li, Fangchao; Yuan, Jianyu
  • Journal of Materials Chemistry A, Vol. 7, Issue 36
  • DOI: 10.1039/c9ta07143a

Quantum dots from microfluidics for nanomedical application
journal, July 2019

  • Bian, Feika; Sun, Lingyu; Cai, Lijun
  • Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Vol. 11, Issue 5
  • DOI: 10.1002/wnan.1567

Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN
journal, January 2019

  • Zhang, Chengxi; Turyanska, Lyudmila; Cao, Haicheng
  • Nanoscale, Vol. 11, Issue 28
  • DOI: 10.1039/c9nr03707a

Quantum Dots for Hybrid Energy Harvesting: From Integration to Piezo‐Phototronics
journal, May 2019

  • Cho, Yuljae; Pak, Sangyeon; An, Geon‐Hyoung
  • Israel Journal of Chemistry, Vol. 59, Issue 8
  • DOI: 10.1002/ijch.201900035

Dual Interfacial Design for Efficient CsPbI 2 Br Perovskite Solar Cells with Improved Photostability
journal, March 2019

  • Tian, Jingjing; Xue, Qifan; Tang, Xiaofeng
  • Advanced Materials, Vol. 31, Issue 23
  • DOI: 10.1002/adma.201901152

Inorganic CsPbI 3 Perovskites toward High‐Efficiency Photovoltaics
journal, June 2019

  • Shi, Jielin; Wang, Yong; Zhao, Yixin
  • ENERGY & ENVIRONMENTAL MATERIALS, Vol. 2, Issue 2
  • DOI: 10.1002/eem2.12039

Room Temperature Synthesis of Phosphine‐Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents
journal, November 2019

  • Ambroz, Filip; Xu, Weidong; Gadipelli, Srinivas
  • Particle & Particle Systems Characterization, Vol. 37, Issue 1
  • DOI: 10.1002/ppsc.201900391

CsI‐Antisolvent Adduct Formation in All‐Inorganic Metal Halide Perovskites
journal, January 2020

  • Moot, Taylor; Marshall, Ashley R.; Wheeler, Lance M.
  • Advanced Energy Materials, Vol. 10, Issue 9
  • DOI: 10.1002/aenm.201903365

Colloidal metal halide perovskite nanocrystals: a promising juggernaut in photovoltaic applications
journal, January 2019


Rational Core–Shell Design of Open Air Low Temperature In Situ Processable CsPbI 3 Quasi‐Nanocrystals for Stabilized p‐i‐n Solar Cells
journal, July 2019

  • Xi, Jun; Piao, Chengcheng; Byeon, Junseop
  • Advanced Energy Materials, Vol. 9, Issue 31
  • DOI: 10.1002/aenm.201901787

Synthesis and optical applications of low dimensional metal-halide perovskites
journal, January 2020


Halide Perovskite Nanocrystals for Next‐Generation Optoelectronics
journal, April 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.