skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-brilliance, high-flux compact inverse Compton light source

Abstract

The Old Dominion University Compact Light Source (ODU CLS) design concept is presented—a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond ($$2/3\text{ }\text{ }\mathrm{ps}$$). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to the interaction point (IP). The distance from cathode surface to IP is less than 6 m, with the cathode producing electron bunches with a bunch charge of 10 pC and a few picoseconds in length. The incident laser has 1 MW circulating power, a 1 micron wavelength, and a spot size of 3.2 microns at the IP. The repetition rate of this source is 100 MHz, in order to achieve a high flux despite the low bunch charge. The anticipated x-ray source parameters include an energy of 12 keV, with a total flux of $$2.2\times{}{10}^{13}\text{ }\text{ }\mathrm{ph}/\mathrm{s}$$, the flux into a 0.1% bandwidth of $$3.3\times{}{10}^{10}\text{ }\text{ }\mathrm{ph}/$$(s0.1%BW), and the average brilliance of $$3.4\times{10}^{14}\text{ }\text{ }\mathrm{ph}/(\mathrm{s}\text{ }{\mathrm{mm}}^{2}\text{ }{\mathrm{mrad}}^{2}\text{ }0.1%)$$%BW).

Authors:
 [1];  [2];  [1];  [2]
  1. Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics. Center for Accelerator Science
  2. Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics. Center for Accelerator Science; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Publication Date:
Research Org.:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26); USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1466447
Alternate Identifier(s):
OSTI ID: 1466670
Report Number(s):
JLAB-ACP-18-2670; DOE/OR/23177-4378
Journal ID: ISSN 2469-9888
Grant/Contract Number:  
AC05-06OR23177; AC02-05CH11231; SC0004094; SC0010081; 1416051; 1535641
Resource Type:
Published Article
Journal Name:
Physical Review Accelerators and Beams
Additional Journal Information:
Journal Volume: 21; Journal Issue: 8; Journal ID: ISSN 2469-9888
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS; relativistic multiple-particle dynamics

Citation Formats

Deitrick, K. E., Krafft, G. A., Terzić, B., and Delayen, J. R. High-brilliance, high-flux compact inverse Compton light source. United States: N. p., 2018. Web. doi:10.1103/PhysRevAccelBeams.21.080703.
Deitrick, K. E., Krafft, G. A., Terzić, B., & Delayen, J. R. High-brilliance, high-flux compact inverse Compton light source. United States. doi:10.1103/PhysRevAccelBeams.21.080703.
Deitrick, K. E., Krafft, G. A., Terzić, B., and Delayen, J. R. Fri . "High-brilliance, high-flux compact inverse Compton light source". United States. doi:10.1103/PhysRevAccelBeams.21.080703.
@article{osti_1466447,
title = {High-brilliance, high-flux compact inverse Compton light source},
author = {Deitrick, K. E. and Krafft, G. A. and Terzić, B. and Delayen, J. R.},
abstractNote = {The Old Dominion University Compact Light Source (ODU CLS) design concept is presented—a compact Inverse Compton Light Source (ICLS) with flux and brilliance orders of magnitude beyond conventional laboratory-scale sources and greater than other compact ICLS designs. This concept utilizes the physics of inverse Compton scattering of an extremely low emittance electron beam by a laser pulse of rms length of approximately two-thirds of a picosecond ($2/3\text{ }\text{ }\mathrm{ps}$). The accelerator is composed of a superconducting radio frequency (SRF) reentrant gun followed by four double-spoke SRF cavities. After the linac are three quadrupole magnets to focus the electron beam to the interaction point (IP). The distance from cathode surface to IP is less than 6 m, with the cathode producing electron bunches with a bunch charge of 10 pC and a few picoseconds in length. The incident laser has 1 MW circulating power, a 1 micron wavelength, and a spot size of 3.2 microns at the IP. The repetition rate of this source is 100 MHz, in order to achieve a high flux despite the low bunch charge. The anticipated x-ray source parameters include an energy of 12 keV, with a total flux of $2.2\times{}{10}^{13}\text{ }\text{ }\mathrm{ph}/\mathrm{s}$, the flux into a 0.1% bandwidth of $3.3\times{}{10}^{10}\text{ }\text{ }\mathrm{ph}/$(s0.1%BW), and the average brilliance of $3.4\times{10}^{14}\text{ }\text{ }\mathrm{ph}/(\mathrm{s}\text{ }{\mathrm{mm}}^{2}\text{ }{\mathrm{mrad}}^{2}\text{ }0.1%)$%BW).},
doi = {10.1103/PhysRevAccelBeams.21.080703},
journal = {Physical Review Accelerators and Beams},
number = 8,
volume = 21,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevAccelBeams.21.080703

Save / Share:

Works referenced in this record:

Compton Sources of Electromagnetic Radiation
journal, January 2010

  • Krafft, Geoffrey A.; Priebe, Gerd
  • Reviews of Accelerator Science and Technology, Vol. 03, Issue 01
  • DOI: 10.1142/S1793626810000440

Compact X-ray source based on Compton backscattering
journal, July 2002

  • Bulyak, E.; Gladkikh, P.; Zelinsky, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 487, Issue 3
  • DOI: 10.1016/S0168-9002(02)00904-X

Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry-Perot resonator
journal, January 2007

  • Tarallo, Marco G.; Miller, John; Agresti, J.
  • Applied Optics, Vol. 46, Issue 26
  • DOI: 10.1364/AO.46.006648

Picosecond and sub-picosecond flat-top pulse generation using uniform long-period fiber gratings
journal, January 2006


Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
journal, December 2014

  • Graves, W. S.; Bessuille, J.; Brown, P.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue 12
  • DOI: 10.1103/PhysRevSTAB.17.120701

Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures
journal, August 2013


Detection of radioactive isotopes by using laser Compton scattered -ray beams
journal, September 2009

  • Hajima, R.; Kikuzawa, N.; Nishimori, N.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 608, Issue 1
  • DOI: 10.1016/j.nima.2009.05.063

Unprecedented quality factors at accelerating gradients up to 45 MVm −1 in niobium superconducting resonators via low temperature nitrogen infusion
journal, August 2017

  • Grassellino, A.; Romanenko, A.; Trenikhina, Y.
  • Superconductor Science and Technology, Vol. 30, Issue 9
  • DOI: 10.1088/1361-6668/aa7afe

Advanced photoinjector experiment photogun commissioning results
journal, October 2012

  • Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 15, Issue 10
  • DOI: 10.1103/PhysRevSTAB.15.103501

The Munich Compact Light Source: initial performance measures
journal, July 2016

  • Eggl, Elena; Dierolf, Martin; Achterhold, Klaus
  • Journal of Synchrotron Radiation, Vol. 23, Issue 5
  • DOI: 10.1107/S160057751600967X

Proof-of-principle demonstration of Nb 3 Sn superconducting radiofrequency cavities for high Q 0 applications
journal, February 2015

  • Posen, S.; Liepe, M.; Hall, D. L.
  • Applied Physics Letters, Vol. 106, Issue 8
  • DOI: 10.1063/1.4913247

Understanding the focusing of charged particle beams in a solenoid magnetic field
journal, August 2009


Demonstration of low emittance in the Cornell energy recovery linac injector prototype
journal, July 2013

  • Gulliford, Colwyn; Bartnik, Adam; Bazarov, Ivan
  • Physical Review Special Topics - Accelerators and Beams, Vol. 16, Issue 7
  • DOI: 10.1103/PhysRevSTAB.16.073401

First operation of a superconducting RF-gun
journal, July 2003

  • Janssen, D.; Büttig, H.; Evtushenko, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 507, Issue 1-2
  • DOI: 10.1016/S0168-9002(03)00936-7

Laser pulsing in linear Compton scattering
journal, December 2016


New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator
journal, December 1989

  • Carlsten, B. E.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 285, Issue 1-2
  • DOI: 10.1016/0168-9002(89)90472-5

Superconducting spoke cavities for high-velocity applications
journal, October 2013


X-ray sources by energy recovered linacs and their needed R&D
journal, May 2011

  • Benson, S.; Borland, M.; Douglas, D. R.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 637, Issue 1
  • DOI: 10.1016/j.nima.2010.07.090

Radiation therapy at compact Compton sources
journal, September 2015


Commissioning the Linac Coherent Light Source injector
journal, March 2008


High intensity compact Compton X-ray sources: Challenges and potential of applications
journal, July 2014

  • Jacquet, M.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 331
  • DOI: 10.1016/j.nimb.2013.10.078

Sub-picosecond pulse generation by 40-GHz passively mode-locked quantum-dash 1-mm-long Fabry-Pérot laser diode
journal, January 2009

  • Latkowski, Sylwester; Maldonado-Basilio, Ramón; Landais, Pascal
  • Optics Express, Vol. 17, Issue 21
  • DOI: 10.1364/OE.17.019166

Design study of compact Laser-Electron X-ray Generator for material and life sciences applications
journal, July 2009


Three-dimensional quasistatic model for high brightness beam dynamics simulation
journal, April 2006

  • Qiang, Ji; Lidia, Steve; Ryne, Robert D.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 9, Issue 4
  • DOI: 10.1103/PhysRevSTAB.9.044204

Design and operation of a superconducting quarter-wave electron gun
journal, May 2011

  • Harris, J. R.; Ferguson, K. L.; Lewellen, J. W.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 14, Issue 5
  • DOI: 10.1103/PhysRevSTAB.14.053501

High-power, high-repetition-rate, Yb-fiber laser based femtosecond source at 355  nm
journal, January 2015

  • Apurv Chaitanya, N.; Aadhi, A.; Jabir, M. V.
  • Optics Letters, Vol. 40, Issue 18
  • DOI: 10.1364/OL.40.004269

Simulation of inverse Compton scattering and its implications on the scattered linewidth
journal, March 2018


MIT inverse Compton source concept
journal, September 2009

  • Graves, W. S.; Brown, W.; Kaertner, F. X.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 608, Issue 1
  • DOI: 10.1016/j.nima.2009.05.042

Lattice design and beam dynamics in a compact X-ray source based on Compton scattering
journal, July 2008

  • Yu, Peicheng; Huang, Wenhui
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 592, Issue 1-2
  • DOI: 10.1016/j.nima.2008.03.114

Development of a compact X-ray source based on Compton scattering using a 1.3GHz superconducting RF accelerating linac and a new laser storage cavity
journal, May 2011

  • Urakawa, Junji
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 637, Issue 1
  • DOI: 10.1016/j.nima.2010.02.019

X radiation sources based on accelerators
journal, June 2008


Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors:mA theory of emittance compensation
journal, June 1997


Overview on superconducting photoinjectors
journal, February 2011


High brightness, long pulse, electron beam production with SC photo-injectors
journal, February 1994

  • Pagani, C.; Michelato, P.; Serafini, L.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 340, Issue 1
  • DOI: 10.1016/0168-9002(94)91277-7

RF focussing – an instrument for beam quality improvement in superconducting RF guns
journal, September 2000

  • Janssen, D.; Volkov, V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 452, Issue 1-2
  • DOI: 10.1016/S0168-9002(00)00410-1