skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: PMMA-Assisted Plasma Patterning of Graphene

Abstract

Microelectronic fabrication of Si typically involves high-temperature or high-energy processes. For instance, wafer fabrication, transistor fabrication, and silicidation are all above 500°C. Contrary to that tradition, we believe low-energy processes constitute a better alternative to enable the industrial application of single-molecule devices based on 2D materials. The present work addresses the postsynthesis processing of graphene at unconventional low temperature, low energy, and low pressure in the poly methyl-methacrylate- (PMMA-) assisted transfer of graphene to oxide wafer, in the electron-beam lithography with PMMA, and in the plasma patterning of graphene with a PMMA ribbon mask. During the exposure to the oxygen plasma, unprotected areas of graphene are converted to graphene oxide. The exposure time required to produce the ribbon patterns on graphene is 2 minutes. In conclusion, we produce graphene ribbon patterns with ~50 nm width and integrate them into solid state and liquid gated transistor devices.

Authors:
ORCiD logo [1];  [2];  [2];  [3]; ORCiD logo [4]
  1. Faculty of Engineering, Universidad Peruana de Ciencias Aplicadas, Surco, Lima 33, Peru, Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA, Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA, Department of Chemical Engineering, Electrical and Computer Engineering, and Material Sciences and Engineering, Texas A&M University, College Station, TX 77843, USA
  2. Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
  3. Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
  4. Department of Chemical Engineering, Electrical and Computer Engineering, and Material Sciences and Engineering, Texas A&M University, College Station, TX 77843, USA
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1466086
Alternate Identifier(s):
OSTI ID: 1474154
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Published Article
Journal Name:
Journal of Nanotechnology
Additional Journal Information:
Journal Name: Journal of Nanotechnology Journal Volume: 2018; Journal ID: ISSN 1687-9503
Publisher:
Hindawi Publishing Corporation
Country of Publication:
United Kingdom
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Bobadilla, Alfredo D., Ocola, Leonidas E., Sumant, Anirudha V., Kaminski, Michael, and Seminario, Jorge M. PMMA-Assisted Plasma Patterning of Graphene. United Kingdom: N. p., 2018. Web. doi:10.1155/2018/8349626.
Bobadilla, Alfredo D., Ocola, Leonidas E., Sumant, Anirudha V., Kaminski, Michael, & Seminario, Jorge M. PMMA-Assisted Plasma Patterning of Graphene. United Kingdom. doi:10.1155/2018/8349626.
Bobadilla, Alfredo D., Ocola, Leonidas E., Sumant, Anirudha V., Kaminski, Michael, and Seminario, Jorge M. Thu . "PMMA-Assisted Plasma Patterning of Graphene". United Kingdom. doi:10.1155/2018/8349626.
@article{osti_1466086,
title = {PMMA-Assisted Plasma Patterning of Graphene},
author = {Bobadilla, Alfredo D. and Ocola, Leonidas E. and Sumant, Anirudha V. and Kaminski, Michael and Seminario, Jorge M.},
abstractNote = {Microelectronic fabrication of Si typically involves high-temperature or high-energy processes. For instance, wafer fabrication, transistor fabrication, and silicidation are all above 500°C. Contrary to that tradition, we believe low-energy processes constitute a better alternative to enable the industrial application of single-molecule devices based on 2D materials. The present work addresses the postsynthesis processing of graphene at unconventional low temperature, low energy, and low pressure in the poly methyl-methacrylate- (PMMA-) assisted transfer of graphene to oxide wafer, in the electron-beam lithography with PMMA, and in the plasma patterning of graphene with a PMMA ribbon mask. During the exposure to the oxygen plasma, unprotected areas of graphene are converted to graphene oxide. The exposure time required to produce the ribbon patterns on graphene is 2 minutes. In conclusion, we produce graphene ribbon patterns with ~50 nm width and integrate them into solid state and liquid gated transistor devices.},
doi = {10.1155/2018/8349626},
journal = {Journal of Nanotechnology},
number = ,
volume = 2018,
place = {United Kingdom},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1155/2018/8349626

Save / Share:

Works referenced in this record:

Electron beam generated plasmas for the processing of graphene
journal, August 2017

  • Walton, S. G.; Hernández, S. C.; Boris, D. R.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 35
  • DOI: 10.1088/1361-6463/aa7d12

Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes
journal, August 2015


Controlled modification of mono- and bilayer graphene in O 2 , H 2 and CF 4 plasmas
journal, August 2013


Reliable processing of graphene using metal etchmasks
journal, January 2011

  • Kumar, Shishir; Peltekis, Nikos; Lee, Kangho
  • Nanoscale Research Letters, Vol. 6, Issue 1
  • DOI: 10.1186/1556-276x-6-390

Fabrication of <5 nm width lines in poly(methylmethacrylate) resist using a water:isopropyl alcohol developer and ultrasonically-assisted development
journal, April 2001

  • Yasin, Shazia; Hasko, D. G.; Ahmed, H.
  • Applied Physics Letters, Vol. 78, Issue 18
  • DOI: 10.1063/1.1369615

Atomic layer etching of graphene through controlled ion beam for graphene-based electronics
journal, May 2017


Transfer and patterning of chemical vapor deposited graphene by a multifunctional polymer film
journal, February 2018

  • Kaplas, Tommi; Bera, Arijit; Matikainen, Antti
  • Applied Physics Letters, Vol. 112, Issue 7
  • DOI: 10.1063/1.5012526

Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
journal, September 2017

  • Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00734-x

Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene
journal, July 2011

  • Vlassiouk, Ivan; Regmi, Murari; Fulvio, Pasquale
  • ACS Nano, Vol. 5, Issue 7, p. 6069-6076
  • DOI: 10.1021/nn201978y

The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide
journal, April 2015

  • Claramunt, Sergi; Varea, Aïda; López-Díaz, David
  • The Journal of Physical Chemistry C, Vol. 119, Issue 18
  • DOI: 10.1021/acs.jpcc.5b01590

Comparison of MIBK/IPA and water/IPA as PMMA developers for electron beam nanolithography
journal, July 2002


H + ion-induced damage and etching of multilayer graphene in H 2 plasmas
journal, April 2017

  • Davydova, A.; Despiau-Pujo, E.; Cunge, G.
  • Journal of Applied Physics, Vol. 121, Issue 13
  • DOI: 10.1063/1.4979023

Toward Clean and Crackless Transfer of Graphene
journal, October 2011

  • Liang, Xuelei; Sperling, Brent A.; Calizo, Irene
  • ACS Nano, Vol. 5, Issue 11
  • DOI: 10.1021/nn203377t

Optimal temperature for development of poly(methylmethacrylate)
journal, January 2007

  • Cord, Bryan; Lutkenhaus, Jodie; Berggren, Karl K.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 25, Issue 6
  • DOI: 10.1116/1.2799978

Sub-10 nm Graphene Nanoribbon Array Field-Effect Transistors Fabricated by Block Copolymer Lithography
journal, June 2013

  • Son, Jeong Gon; Son, Myungwoo; Moon, Kyeong-Joo
  • Advanced Materials, Vol. 25, Issue 34
  • DOI: 10.1002/adma.201300813

Sub-10-nm patterning via directed self-assembly of block copolymer films with a vapour-phase deposited topcoat
journal, March 2017

  • Suh, Hyo Seon; Kim, Do Han; Moni, Priya
  • Nature Nanotechnology, Vol. 12, Issue 6
  • DOI: 10.1038/nnano.2017.34

Self-Aligned Multichannel Graphene Nanoribbon Transistor Arrays Fabricated at Wafer Scale
journal, August 2016


Etching of Graphene Devices with a Helium Ion Beam
journal, August 2009

  • Lemme, Max C.; Bell, David C.; Williams, James R.
  • ACS Nano, Vol. 3, Issue 9
  • DOI: 10.1021/nn900744z

Tuning inter-dot tunnel coupling of an etched graphene double quantum dot by adjacent metal gates
journal, November 2013

  • Wei, Da; Li, Hai-Ou; Cao, Gang
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep03175

Suspending Effect on Low-Frequency Charge Noise in Graphene Quantum Dot
journal, January 2015

  • Song, Xiang-Xiang; Li, Hai-Ou; You, Jie
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08142

Initial evaluation and comparison of plasma damage to atomic layer carbon materials using conventional and low T e plasma sources
journal, January 2016

  • Jagtiani, Ashish V.; Miyazoe, Hiroyuki; Chang, Josephine
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 34, Issue 1
  • DOI: 10.1116/1.4936622

Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder
journal, September 2010

  • Martins Ferreira, E. H.; Moutinho, Marcus V. O.; Stavale, F.
  • Physical Review B, Vol. 82, Issue 12
  • DOI: 10.1103/physrevb.82.125429

Probing the Nature of Defects in Graphene by Raman Spectroscopy
journal, July 2012

  • Eckmann, Axel; Felten, Alexandre; Mishchenko, Artem
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl300901a

Bandgap opening in graphene induced by patterned hydrogen adsorption
journal, March 2010

  • Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis
  • Nature Materials, Vol. 9, Issue 4
  • DOI: 10.1038/nmat2710

Effect of cold development on improvement in electron-beam nanopatterning resolution and line roughness
journal, January 2006

  • Ocola, L. E.; Stein, A.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 24, Issue 6
  • DOI: 10.1116/1.2366698

Graphene nano-ribbon electronics
journal, December 2007

  • Chen, Zhihong; Lin, Yu-Ming; Rooks, Michael J.
  • Physica E: Low-dimensional Systems and Nanostructures, Vol. 40, Issue 2, p. 228-232
  • DOI: 10.1016/j.physe.2007.06.020

Quantum transport in graphene nanoribbons patterned by metal masks
journal, March 2010

  • Lian, Chuanxin; Tahy, Kristof; Fang, Tian
  • Applied Physics Letters, Vol. 96, Issue 10
  • DOI: 10.1063/1.3352559

Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements
journal, February 2011


Epitaxial graphene quantum dots for high-performance terahertz bolometers
journal, January 2016

  • El Fatimy, Abdel; Myers-Ward, Rachael L.; Boyd, Anthony K.
  • Nature Nanotechnology, Vol. 11, Issue 4
  • DOI: 10.1038/nnano.2015.303

Transport in Nanoribbon Interconnects Obtained from Graphene Grown by Chemical Vapor Deposition
journal, January 2012

  • Behnam, Ashkan; Lyons, Austin S.; Bae, Myung-Ho
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl300584r

Ballistic to diffusive crossover of heat flow in graphene ribbons
journal, April 2013

  • Bae, Myung-Ho; Li, Zuanyi; Aksamija, Zlatan
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2755

Argon-assisted growth of epitaxial graphene on Cu(111)
journal, December 2012


Thinning of multilayer graphene to monolayer graphene in a plasma environment
journal, December 2010


Patterning graphene nanoribbons using copper oxide nanowires
journal, March 2012

  • Sinitskii, Alexander; Tour, James M.
  • Applied Physics Letters, Vol. 100, Issue 10
  • DOI: 10.1063/1.3692744

Gates controlled parallel-coupled double quantum dot on both single layer and bilayer graphene
journal, September 2011

  • Wang, Lin-Jun; Guo, Guo-Ping; Wei, Da
  • Applied Physics Letters, Vol. 99, Issue 11
  • DOI: 10.1063/1.3638471

Measurement of the quantum capacitance of graphene
journal, July 2009

  • Xia, Jilin; Chen, Fang; Li, Jinghong
  • Nature Nanotechnology, Vol. 4, Issue 8, p. 505-509
  • DOI: 10.1038/nnano.2009.177

Europium Effect on the Electron Transport in Graphene Ribbons
journal, September 2015

  • Bobadilla, Alfredo D.; Ocola, Leonidas E.; Sumant, Anirudha V.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 39
  • DOI: 10.1021/acs.jpcc.5b06499

Rational Fabrication of Graphene Nanoribbons Using a Nanowire Etch Mask
journal, May 2009

  • Bai, Jingwei; Duan, Xiangfeng; Huang, Yu
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl900531n

Chaotic Dirac Billiard in Graphene Quantum Dots
journal, April 2008

  • Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.
  • Science, Vol. 320, Issue 5874, p. 356-358
  • DOI: 10.1126/science.1154663

Enhancing the dry etch resistance of polymethyl methacrylate patterned with electron beam lithography
journal, July 2017

  • Carbaugh, Daniel J.; Pandya, Sneha G.; Wright, Jason T.
  • Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, Vol. 35, Issue 4
  • DOI: 10.1116/1.4989532

Graphene-based liquid-gated field effect transistor for biosensing: Theory and experiments
journal, August 2015

  • Reiner-Rozman, Ciril; Larisika, Melanie; Nowak, Christoph
  • Biosensors and Bioelectronics, Vol. 70
  • DOI: 10.1016/j.bios.2015.03.013

Precise control of defects in graphene using oxygen plasma
journal, November 2015

  • Lee, Geonyeop; Kim, Jihyun; Kim, Kyeounghak
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 33, Issue 6
  • DOI: 10.1116/1.4926378

Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning
journal, April 2013

  • Jin, Zhong; Sun, Wei; Ke, Yonggang
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2690