DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules

Abstract

In indirectly driven Inertial Confinement Fusion implosions conducted on the National Ignition Facility (NIF), the imploding capsule is supported in a laser-heated radiation enclosure (called a “hohlraum”) by a pair of very thin (~15–45 nm) plastic films (referred to as a “tent”). Even though the thickness of these tents is a small fraction of that of the spherical capsule ablator (~165 μm), both numerical simulations as well as experiments indicate that this capsule support mechanism results in a large areal density (ρR) perturbation on the capsule surface at the contact point where the tent departs from the capsule. As a result, during deceleration of the deuterium-tritium (DT) fuel layer, a jet of the dense ablator material penetrates and cools the fuel hot spot, significantly degrading the neutron yield (resulting in only ~10%–20% of the unperturbed 1-D yield). In this article, we present a hypothesis and supporting design simulations of a new “polar contact” tent support system, which reduces the contact area between the tent and the capsule and results in a significant improvement in the capsule performance. Simulations predict a ~70% increase in neutron yield over that for an implosion with a traditional tent support. Overall, an initial demonstration experimentmore » was conducted on the NIF and produced highest ever recorded primary DT neutron yield among all layered DT implosions with plastic ablators on the NIF, though more experiments are needed to comprehensively study the effect of the polar tent on implosion performance.« less

Authors:
 [1];  [1];  [1];  [2];  [1];  [1]; ORCiD logo [1];  [2];  [2];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1] more »;  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1765299
Alternate Identifier(s):
OSTI ID: 1466077
Report Number(s):
LLNL-JRNL-743472
Journal ID: ISSN 1070-664X; 898422; TRN: US2206235
Grant/Contract Number:  
AC52-07NA27344; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Plasma confinement

Citation Formats

Hammel, B. A., Weber, C. R., Stadermann, M., Alday, C. L., Aracne-Ruddle, C., Bigelow, J. R., Clark, D. S., Cortez, J. P., Diaz, S., Döppner, T., Felker, S., Field, J. E., Haan, S. W., Havre, M. O., Heinbockel, C., Hinkel, D. E., Hsing, W. W., Johnson, S. A., Nikroo, A., Pickworth, L. A., Ralph, J. E., Robey, H. F., and Smalyuk, V. A. A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules. United States: N. p., 2018. Web. doi:10.1063/1.5032121.
Hammel, B. A., Weber, C. R., Stadermann, M., Alday, C. L., Aracne-Ruddle, C., Bigelow, J. R., Clark, D. S., Cortez, J. P., Diaz, S., Döppner, T., Felker, S., Field, J. E., Haan, S. W., Havre, M. O., Heinbockel, C., Hinkel, D. E., Hsing, W. W., Johnson, S. A., Nikroo, A., Pickworth, L. A., Ralph, J. E., Robey, H. F., & Smalyuk, V. A. A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules. United States. https://doi.org/10.1063/1.5032121
Hammel, B. A., Weber, C. R., Stadermann, M., Alday, C. L., Aracne-Ruddle, C., Bigelow, J. R., Clark, D. S., Cortez, J. P., Diaz, S., Döppner, T., Felker, S., Field, J. E., Haan, S. W., Havre, M. O., Heinbockel, C., Hinkel, D. E., Hsing, W. W., Johnson, S. A., Nikroo, A., Pickworth, L. A., Ralph, J. E., Robey, H. F., and Smalyuk, V. A. Thu . "A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules". United States. https://doi.org/10.1063/1.5032121. https://www.osti.gov/servlets/purl/1765299.
@article{osti_1765299,
title = {A “polar contact” tent for reduced perturbation and improved performance of NIF ignition capsules},
author = {Hammel, B. A. and Weber, C. R. and Stadermann, M. and Alday, C. L. and Aracne-Ruddle, C. and Bigelow, J. R. and Clark, D. S. and Cortez, J. P. and Diaz, S. and Döppner, T. and Felker, S. and Field, J. E. and Haan, S. W. and Havre, M. O. and Heinbockel, C. and Hinkel, D. E. and Hsing, W. W. and Johnson, S. A. and Nikroo, A. and Pickworth, L. A. and Ralph, J. E. and Robey, H. F. and Smalyuk, V. A.},
abstractNote = {In indirectly driven Inertial Confinement Fusion implosions conducted on the National Ignition Facility (NIF), the imploding capsule is supported in a laser-heated radiation enclosure (called a “hohlraum”) by a pair of very thin (~15–45 nm) plastic films (referred to as a “tent”). Even though the thickness of these tents is a small fraction of that of the spherical capsule ablator (~165 μm), both numerical simulations as well as experiments indicate that this capsule support mechanism results in a large areal density (ρR) perturbation on the capsule surface at the contact point where the tent departs from the capsule. As a result, during deceleration of the deuterium-tritium (DT) fuel layer, a jet of the dense ablator material penetrates and cools the fuel hot spot, significantly degrading the neutron yield (resulting in only ~10%–20% of the unperturbed 1-D yield). In this article, we present a hypothesis and supporting design simulations of a new “polar contact” tent support system, which reduces the contact area between the tent and the capsule and results in a significant improvement in the capsule performance. Simulations predict a ~70% increase in neutron yield over that for an implosion with a traditional tent support. Overall, an initial demonstration experiment was conducted on the NIF and produced highest ever recorded primary DT neutron yield among all layered DT implosions with plastic ablators on the NIF, though more experiments are needed to comprehensively study the effect of the polar tent on implosion performance.},
doi = {10.1063/1.5032121},
journal = {Physics of Plasmas},
number = 8,
volume = 25,
place = {United States},
year = {Thu Aug 23 00:00:00 EDT 2018},
month = {Thu Aug 23 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

NIF Ignition Campaign Target Performance and Requirements: Status May 2012
journal, April 2013

  • Haan, S. W.; Atherton, J.; Clark, D. S.
  • Fusion Science and Technology, Vol. 63, Issue 2
  • DOI: 10.13182/FST13-TFM20-31

The effects of convergence ratio on the implosion behavior of DT layered inertial confinement fusion capsules
journal, July 2017

  • Haines, Brian M.; Yi, S. A.; Olson, R. E.
  • Physics of Plasmas, Vol. 24, Issue 7
  • DOI: 10.1063/1.4993065

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions
journal, May 2016


Improvements to Formvar Tent Fabrication Using the Meniscus Coater
journal, January 2011

  • Stadermann, M.; Letts, S. A.; Bhandarkar, S.
  • Fusion Science and Technology, Vol. 59, Issue 1
  • DOI: 10.13182/FST10-3714

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

Capsule modeling of high foot implosion experiments on the National Ignition Facility
journal, March 2017

  • Clark, D. S.; Kritcher, A. L.; Milovich, J. L.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 5
  • DOI: 10.1088/1361-6587/aa6216

The National Ignition Facility: Ushering in a new age for high energy density science
journal, April 2009

  • Moses, E. I.; Boyd, R. N.; Remington, B. A.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3116505

High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
journal, May 2017

  • Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4981222

The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Enhanced Delamination of Ultrathin Free-Standing Polymer Films via Self-Limiting Surface Modification
journal, April 2014

  • Baxamusa, Salmaan H.; Stadermann, Michael; Aracne-Ruddle, Chantel
  • Langmuir, Vol. 30, Issue 18
  • DOI: 10.1021/la5011665

Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
journal, February 2015

  • Clark, D. S.; Marinak, M. M.; Weber, C. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4906897

NIF Ignition Campaign Target Performance and Requirements: Status May 2012
journal, March 2013

  • Haan, S. W.; Atherton, J.; Clark, D. S.
  • Fusion Science and Technology, Vol. 63, Issue 2
  • DOI: 10.13182/fst20-31

Effect of the mounting membrane on shape in inertial confinement fusion implosions
journal, February 2015

  • Nagel, S. R.; Haan, S. W.; Rygg, J. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907179

Works referencing / citing this record:

Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions
journal, May 2019

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5091449

Robustness to hydrodynamic instabilities in indirectly driven layered capsule implosions
journal, January 2019

  • Haines, Brian M.; Olson, R. E.; Sweet, W.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5080262

Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility
journal, January 2019

  • Berger, R. L.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5079234

Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility
journal, October 2019

  • Smalyuk, V. A.; Weber, C. R.; Landen, O. L.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 1
  • DOI: 10.1088/1361-6587/ab49f4

Progress of indirect drive inertial confinement fusion in the United States
journal, July 2019