skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: HiSpatialCluster: A novel high-performance software tool for clustering massive spatial points: XXXX

Authors:
ORCiD logo [1];  [1];  [2];  [1]
  1. Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing China, Beijing Key Lab of Spatial Information Integration & Its Applications, Peking University, Beijing China
  2. State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing China
Publication Date:
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10)
OSTI Identifier:
1466059
Grant/Contract Number:  
2017YFB0503602
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Transactions in GIS
Additional Journal Information:
Journal Name: Transactions in GIS Journal Volume: 22 Journal Issue: 5; Journal ID: ISSN 1361-1682
Publisher:
Wiley-Blackwell
Country of Publication:
Country unknown/Code not available
Language:
English

Citation Formats

Chen, Yiran, Huang, Zhou, Pei, Tao, and Liu, Yu. HiSpatialCluster: A novel high-performance software tool for clustering massive spatial points: XXXX. Country unknown/Code not available: N. p., 2018. Web. doi:10.1111/tgis.12463.
Chen, Yiran, Huang, Zhou, Pei, Tao, & Liu, Yu. HiSpatialCluster: A novel high-performance software tool for clustering massive spatial points: XXXX. Country unknown/Code not available. doi:10.1111/tgis.12463.
Chen, Yiran, Huang, Zhou, Pei, Tao, and Liu, Yu. Wed . "HiSpatialCluster: A novel high-performance software tool for clustering massive spatial points: XXXX". Country unknown/Code not available. doi:10.1111/tgis.12463.
@article{osti_1466059,
title = {HiSpatialCluster: A novel high-performance software tool for clustering massive spatial points: XXXX},
author = {Chen, Yiran and Huang, Zhou and Pei, Tao and Liu, Yu},
abstractNote = {},
doi = {10.1111/tgis.12463},
journal = {Transactions in GIS},
number = 5,
volume = 22,
place = {Country unknown/Code not available},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1111/tgis.12463

Save / Share:

Works referenced in this record:

A new approach to the nearest‐neighbour method to discover cluster features in overlaid spatial point processes
journal, February 2006

  • Pei, Tao; Zhu, A‐Xing; Zhou, Chenghu
  • International Journal of Geographical Information Science, Vol. 20, Issue 2
  • DOI: 10.1080/13658810500399654

ST-DBSCAN: An algorithm for clustering spatial–temporal data
journal, January 2007


Clustering by fast search and find of density peaks
journal, June 2014


Detecting tourism destinations using scalable geospatial analysis based on cloud computing platform
journal, November 2015


CURE: an efficient clustering algorithm for large databases
journal, June 1998

  • Guha, Sudipto; Rastogi, Rajeev; Shim, Kyuseok
  • ACM SIGMOD Record, Vol. 27, Issue 2
  • DOI: 10.1145/276305.276312

Combining partitional and hierarchical algorithms for robust and efficient data clustering with cohesion self-merging
journal, February 2005

  • Cheng-Ru Lin,
  • IEEE Transactions on Knowledge and Data Engineering, Vol. 17, Issue 2
  • DOI: 10.1109/TKDE.2005.21

Multi-scale decomposition of point process data
journal, August 2012


ACOMCD: A multiple cluster detection algorithm based on the spatial scan statistic and ant colony optimization
journal, February 2012


Exploring the travel behaviors of inbound tourists to Hong Kong using geotagged photos
journal, February 2015


Detecting feature from spatial point processes using Collective Nearest Neighbor
journal, November 2009


CLARANS: a method for clustering objects for spatial data mining
journal, September 2002


An adaptive spatial clustering algorithm based on delaunay triangulation
journal, July 2011


Argument free clustering for large spatial point-data sets via boundary extraction from Delaunay Diagram
journal, July 2002


OPTICS: ordering points to identify the clustering structure
journal, June 1999

  • Ankerst, Mihael; Breunig, Markus M.; Kriegel, Hans-Peter
  • ACM SIGMOD Record, Vol. 28, Issue 2
  • DOI: 10.1145/304181.304187

Exploration of geo-tagged photos through data mining approaches
journal, February 2014