skip to main content

DOE PAGESDOE PAGES

Title: Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids

Electrostatic interactions play a critical role in determining the properties, structures, and dynamics of chemical, biochemical, and material systems. These interactions are described well at the level of quantum mechanics (QM) but not so well for the various models used in force field simulations of these systems. In this paper, we propose and validate a new general methodology, denoted PQEq, to predict rapidly and dynamically the atomic charges and polarization underlying the electrostatic interactions. Here the polarization is described using an atomic sized Gaussian shaped electron density that can polarize away from the core in response to internal and external electric fields, while at the same time adjusting the charge on each core (described as a Gaussian function) so as to achieve a constant chemical potential across all atoms of the system. The parameters for PQEq are derived from experimental atomic properties of all elements up to Nobelium (atomic no. = 102). Additionally, we validate PQEq by comparing to QM interaction energy as probe dipoles are brought along various directions up to 30 molecules containing H, C, N, O, F, Si, P, S, and Cl atoms. We find that PQEq predicts interaction energies in excellent agreement with QM, much bettermore » than other common charge models such as obtained from QM using Mulliken or ESP charges and those from standard force fields (OPLS and AMBER). Since PQEq increases the accuracy of electrostatic interactions and the response to external electric fields, we expect that PQEq will be useful for a large range of applications including ligand docking to proteins, catalytic reactions, electrocatalysis, ferroelectrics, and growth of ceramics and films, where it could be incorporated into standard force fields as OPLS, AMBER, CHARMM, Dreiding, ReaxFF, and UFF.« less
Authors:
 [1] ;  [1] ; ORCiD logo [1] ;  [1]
  1. California Inst. of Technology (CalTech), Pasadena, CA (United States). Materials and Process Simulation Center
Publication Date:
Grant/Contract Number:
SC0004993
Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 146; Journal Issue: 12; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Research Org:
California Inst. of Technology (CalTech), Pasadena, CA (United States)
Sponsoring Org:
USDOE Office of Science (SC)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
OSTI Identifier:
1465950

Naserifar, Saber, Brooks, Daniel J., Goddard, William A., and Cvicek, Vaclav. Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids. United States: N. p., Web. doi:10.1063/1.4978891.
Naserifar, Saber, Brooks, Daniel J., Goddard, William A., & Cvicek, Vaclav. Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids. United States. doi:10.1063/1.4978891.
Naserifar, Saber, Brooks, Daniel J., Goddard, William A., and Cvicek, Vaclav. 2017. "Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids". United States. doi:10.1063/1.4978891. https://www.osti.gov/servlets/purl/1465950.
@article{osti_1465950,
title = {Polarizable charge equilibration model for predicting accurate electrostatic interactions in molecules and solids},
author = {Naserifar, Saber and Brooks, Daniel J. and Goddard, William A. and Cvicek, Vaclav},
abstractNote = {Electrostatic interactions play a critical role in determining the properties, structures, and dynamics of chemical, biochemical, and material systems. These interactions are described well at the level of quantum mechanics (QM) but not so well for the various models used in force field simulations of these systems. In this paper, we propose and validate a new general methodology, denoted PQEq, to predict rapidly and dynamically the atomic charges and polarization underlying the electrostatic interactions. Here the polarization is described using an atomic sized Gaussian shaped electron density that can polarize away from the core in response to internal and external electric fields, while at the same time adjusting the charge on each core (described as a Gaussian function) so as to achieve a constant chemical potential across all atoms of the system. The parameters for PQEq are derived from experimental atomic properties of all elements up to Nobelium (atomic no. = 102). Additionally, we validate PQEq by comparing to QM interaction energy as probe dipoles are brought along various directions up to 30 molecules containing H, C, N, O, F, Si, P, S, and Cl atoms. We find that PQEq predicts interaction energies in excellent agreement with QM, much better than other common charge models such as obtained from QM using Mulliken or ESP charges and those from standard force fields (OPLS and AMBER). Since PQEq increases the accuracy of electrostatic interactions and the response to external electric fields, we expect that PQEq will be useful for a large range of applications including ligand docking to proteins, catalytic reactions, electrocatalysis, ferroelectrics, and growth of ceramics and films, where it could be incorporated into standard force fields as OPLS, AMBER, CHARMM, Dreiding, ReaxFF, and UFF.},
doi = {10.1063/1.4978891},
journal = {Journal of Chemical Physics},
number = 12,
volume = 146,
place = {United States},
year = {2017},
month = {3}
}

Works referenced in this record:

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992
  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993
  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Local polarization dynamics in ferroelectric materials
journal, April 2010
  • Kalinin, Sergei V.; Morozovska, Anna N.; Chen, Long Qing
  • Reports on Progress in Physics, Vol. 73, Issue 5, Article No. 056502
  • DOI: 10.1088/0034-4885/73/5/056502

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972
  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527