skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer

Abstract

Low-density foams of low-/mid-Z materials have been previously proposed to mitigate laser imprint for direct-drive inertial confinement fusion (ICF). For foam densities above the critical density of the drive laser, the mechanism of laser-imprint mitigation relies on the reduced growth rate of Rayleigh–Taylor instability because of the increased ablation velocity and density scale length at the ablation surface. Experimental demonstration of this concept has been limited so far to planar-target geometry. The impact of foams on spherical implosions has not yet been explored in experiments. To examine the viability of using an above-critical-density foam layer to mitigate laser-imprint effects in direct-drive ICF implosions on OMEGA, we have performed a series of 2-D DRACO simulations with state-of-the-art physics models, including nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state tables. The simulation results indicate that a 40-μm-thick CH or SiO 2 foam layer with a density of p = 40 mg/cm 3 added to a D2-filled polystyrene (CH) capsule can significantly improve the moderate-adiabat (α ≈ 3) implosion performance. In comparison with the standard CH target implosion, an increase of neutron yield by a factor of 4 to 8 and the recovery of 1-D compression pR are predicted by DRACO simulationsmore » for a foam-target surface roughness of σ rms ≤ 0.5 μm. These encouraging results could readily facilitate experimental demonstrations of laser-imprint mitigation with an above-critical-density foam layer.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1465792
Report Number(s):
2018-150; 23-84
Journal ID: ISSN 1070-664X; 2018-150, 1426, 2384; TRN: US1902558
Grant/Contract Number:  
NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Hu, S. X., Theobald, W., Radha, P. B., Peebles, J. L., Regan, S. P., Nikroo, A., Bonino, M. J., Harding, D. R., Goncharov, V. N., Petta, N., Sangster, T. C., and Campbell, E. M. Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer. United States: N. p., 2018. Web. doi:10.1063/1.5044609.
Hu, S. X., Theobald, W., Radha, P. B., Peebles, J. L., Regan, S. P., Nikroo, A., Bonino, M. J., Harding, D. R., Goncharov, V. N., Petta, N., Sangster, T. C., & Campbell, E. M. Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer. United States. doi:10.1063/1.5044609.
Hu, S. X., Theobald, W., Radha, P. B., Peebles, J. L., Regan, S. P., Nikroo, A., Bonino, M. J., Harding, D. R., Goncharov, V. N., Petta, N., Sangster, T. C., and Campbell, E. M. Fri . "Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer". United States. doi:10.1063/1.5044609. https://www.osti.gov/servlets/purl/1465792.
@article{osti_1465792,
title = {Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer},
author = {Hu, S. X. and Theobald, W. and Radha, P. B. and Peebles, J. L. and Regan, S. P. and Nikroo, A. and Bonino, M. J. and Harding, D. R. and Goncharov, V. N. and Petta, N. and Sangster, T. C. and Campbell, E. M.},
abstractNote = {Low-density foams of low-/mid-Z materials have been previously proposed to mitigate laser imprint for direct-drive inertial confinement fusion (ICF). For foam densities above the critical density of the drive laser, the mechanism of laser-imprint mitigation relies on the reduced growth rate of Rayleigh–Taylor instability because of the increased ablation velocity and density scale length at the ablation surface. Experimental demonstration of this concept has been limited so far to planar-target geometry. The impact of foams on spherical implosions has not yet been explored in experiments. To examine the viability of using an above-critical-density foam layer to mitigate laser-imprint effects in direct-drive ICF implosions on OMEGA, we have performed a series of 2-D DRACO simulations with state-of-the-art physics models, including nonlocal thermal transport, cross-beam energy transfer, and first-principles equation-of-state tables. The simulation results indicate that a 40-μm-thick CH or SiO2 foam layer with a density of p = 40 mg/cm3 added to a D2-filled polystyrene (CH) capsule can significantly improve the moderate-adiabat (α ≈ 3) implosion performance. In comparison with the standard CH target implosion, an increase of neutron yield by a factor of 4 to 8 and the recovery of 1-D compression pR are predicted by DRACO simulations for a foam-target surface roughness of σrms ≤ 0.5 μm. These encouraging results could readily facilitate experimental demonstrations of laser-imprint mitigation with an above-critical-density foam layer.},
doi = {10.1063/1.5044609},
journal = {Physics of Plasmas},
number = 8,
volume = 25,
place = {United States},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Suppression of Laser Nonuniformity Imprinting Using a Thin High- Z Coating
journal, February 2015


Laser Imprint Reduction Using a Low-Density Foam Buffer as a Thermal Smoothing Layer at 351-nm Wavelength
journal, November 1998


Distributed phase plates for super-Gaussian focal-plane irradiance profiles
journal, January 1995

  • Lin, Y.; Lawrence, G. N.; Kessler, T. J.
  • Optics Letters, Vol. 20, Issue 7
  • DOI: 10.1364/OL.20.000764

Optical properties of highly compressed polystyrene: An ab initio study
journal, October 2017


Laser-supported ionization wave in under-dense gases and foams
journal, October 2011

  • Gus’kov, S. Yu.; Limpouch, J.; Nicolaï, Ph.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3642615

Spherical Rayleigh–Taylor growth of three-dimensional broadband perturbations on OMEGA
journal, November 2009

  • Smalyuk, V. A.; Hu, S. X.; Hager, J. D.
  • Physics of Plasmas, Vol. 16, Issue 11
  • DOI: 10.1063/1.3253321

First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations
journal, April 2017


Theory of induced spatial incoherence
journal, October 1987

  • Lehmberg, R. H.; Schmitt, A. J.; Bodner, S. E.
  • Journal of Applied Physics, Vol. 62, Issue 7
  • DOI: 10.1063/1.339419

Laser-induced adiabat shaping by relaxation in inertial fusion implosions
journal, January 2004

  • Anderson, K.; Betti, R.
  • Physics of Plasmas, Vol. 11, Issue 1
  • DOI: 10.1063/1.1632903

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Reduction of early-time perturbation growth in ablatively driven laser targets using tailored density profiles
journal, August 1999

  • Metzler, Nathan; Velikovich, Alexander L.; Gardner, John H.
  • Physics of Plasmas, Vol. 6, Issue 8
  • DOI: 10.1063/1.873569

Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser
journal, April 1999

  • Boehly, T. R.; Smalyuk, V. A.; Meyerhofer, D. D.
  • Journal of Applied Physics, Vol. 85, Issue 7
  • DOI: 10.1063/1.369702

Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions
journal, May 2017


Propagation of a Rippled Shock Wave Driven by Nonuniform Laser Ablation
journal, March 1997


Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations
journal, May 2013

  • Michel, D. T.; Maximov, A. V.; Short, R. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803090

Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets
journal, June 2012

  • Fiksel, G.; Hu, S. X.; Goncharov, V. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729732

Rayleigh-Taylor Growth Measurements in the Acceleration Phase of Spherical Implosions on OMEGA
journal, September 2009


Rayleigh–Taylor instability growth on low-density foam targets
journal, September 2008

  • Watari, T.; Nakai, M.; Azechi, H.
  • Physics of Plasmas, Vol. 15, Issue 9
  • DOI: 10.1063/1.2980419

Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
journal, May 2018

  • Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022181

First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
journal, October 2015


Improved performance of direct-drive inertial confinement fusion target designs with adiabat shaping using an intensity picket
journal, May 2003

  • Goncharov, V. N.; Knauer, J. P.; McKenty, P. W.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1562166

High-performance inertial confinement fusion target implosions on OMEGA
journal, April 2011


Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility
journal, March 2013

  • Michel, D. T.; Edgell, D. H.; Froula, D. H.
  • Physics of Plasmas, Vol. 20, Issue 3
  • DOI: 10.1063/1.4794285

Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA
journal, October 2010

  • Hu, S. X.; Goncharov, V. N.; Radha, P. B.
  • Physics of Plasmas, Vol. 17, Issue 10
  • DOI: 10.1063/1.3491467

Growth rates of the ablative Rayleigh–Taylor instability in inertial confinement fusion
journal, May 1998

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 5, Issue 5
  • DOI: 10.1063/1.872802

Triple-picket warm plastic-shell implosions on OMEGA
journal, January 2011

  • Radha, P. B.; Stoeckl, C.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3544930

First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications
journal, September 2014


Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive Inertial Confinement Fusion
journal, April 2012


Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression
journal, September 1984


Shell trajectory measurements from direct-drive implosion experiments
journal, October 2012

  • Michel, D. T.; Sorce, C.; Epstein, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732179

Observation of the stabilizing effect of a laminated ablator on the ablative Rayleigh-Taylor instability
journal, May 2011


Improving ICF implosion performance with alternative capsule supports
journal, May 2017

  • Weber, C. R.; Casey, D. T.; Clark, D. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977536

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion
journal, May 2011

  • Edwards, M. J.; Lindl, J. D.; Spears, B. K.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592173

Computational study of laser imprint mitigation in foam-buffered inertial confinement fusion targets
journal, January 1998

  • Mason, R. J.; Kopp, R. A.; Vu, H. X.
  • Physics of Plasmas, Vol. 5, Issue 1
  • DOI: 10.1063/1.872690

Properties of warm dense polystyrene plasmas along the principal Hugoniot
journal, June 2014


Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Laser imprint reduction with a short shaping laser pulse incident upon a foam-plastic target
journal, December 2002

  • Metzler, Nathan; Velikovich, Alexander L.; Schmitt, Andrew J.
  • Physics of Plasmas, Vol. 9, Issue 12
  • DOI: 10.1063/1.1517610

Experimental demonstration of laser imprint reduction using underdense foams
journal, April 2016

  • Delorme, B.; Olazabal-Loumé, M.; Casner, A.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4945619

A nonlocal electron conduction model for multidimensional radiation hydrodynamics codes
journal, January 2000

  • Schurtz, G. P.; Nicolaï, Ph. D.; Busquet, M.
  • Physics of Plasmas, Vol. 7, Issue 10
  • DOI: 10.1063/1.1289512

Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets
journal, May 2002

  • Obenschain, S. P.; Colombant, D. G.; Karasik, M.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1464541

Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light
journal, October 1989

  • Skupsky, S.; Short, R. W.; Kessler, T.
  • Journal of Applied Physics, Vol. 66, Issue 8
  • DOI: 10.1063/1.344101

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Direct drive: Simulations and results from the National Ignition Facility
journal, April 2016

  • Radha, P. B.; Hohenberger, M.; Edgell, D. H.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946023

Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions
journal, June 2010


Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility
journal, May 2016

  • Davis, A. K.; Cao, D.; Michel, D. T.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946022

Absolute Hugoniot measurements for CH foams in the 2–9 Mbar range
journal, March 2018

  • Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5020422

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Multidimensional analysis of direct-drive, plastic-shell implosions on OMEGA
journal, May 2005

  • Radha, P. B.; Collins, T. J. B.; Delettrez, J. A.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1882333

Enhanced Direct-Drive Implosions with Thin High- Z Ablation Layers
journal, February 2008


Indirect-direct hybrid target experiments with the GEKKO XII laser
journal, March 2000


One-megajoule, wetted-foam target-design performance for the National Ignition Facility
journal, May 2007

  • Collins, T. J. B.; Marozas, J. A.; Betti, R.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2709859

Model of hydrodynamic perturbation growth in the start-up phase of laser implosion
journal, September 1998


First-principles equation-of-state table of deuterium for inertial confinement fusion applications
journal, December 2011


Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system
journal, November 2009

  • Hu, S. X.; Radha, P. B.; Marozas, J. A.
  • Physics of Plasmas, Vol. 16, Issue 11
  • DOI: 10.1063/1.3259355

Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target
journal, May 2004


Enhancement of Stimulated Brillouin Scattering due to Reflection of Light from Plasma Critical Surface
journal, September 1979


Laser Smoothing and Imprint Reduction with a Foam Layer in the Multikilojoule Regime
journal, May 2009


Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- Z Dopants
journal, May 2012


Multibeam Effects on Fast-Electron Generation from Two-Plasmon-Decay Instability
journal, June 2003


Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
journal, August 2015

  • Cao, Duc; Moses, Gregory; Delettrez, Jacques
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928445

    Works referencing / citing this record:

    Direct-drive measurements of laser-imprint-induced shock velocity nonuniformities
    journal, June 2019