skip to main content


Title: A force-level theory of the rheology of entangled rod and chain polymer liquids. I. Tube deformation, microscopic yielding, and the nonlinear elastic limit

In this paper, we employ a first-principles-based, force-level approach to construct the anharmonic tube confinement field for entangled fluids of rigid needles, and also for chains described at the primitive-path (PP) level in two limiting situations where chain stretch is assumed to either be completely equilibrated or unrelaxed. The influence of shear and extensional deformation and polymer orientation is determined in a nonlinear elastic limit where dissipative relaxation processes are intentionally neglected. For needles and PP-level chains, a self-consistent analysis of transverse polymer harmonic dynamical fluctuations predicts that deformation-induced orientation leads to tube weakening or widening. In contrast, for deformed polymers in which chain stretch does not relax, we find tube strengthening or compression. For all three systems, a finite maximum transverse entanglement force localizing the polymers in effective tubes is predicted. The conditions when this entanglement force can be overcome by an externally applied force associated with macroscopic deformation can be crisply defined in the nonlinear elastic limit, and the possibility of a “microscopic absolute yielding” event destroying the tube confinement can be analyzed. For needles and contour-relaxed PP chains, this force imbalance occurs at a stress of order the equilibrium shear modulus and a strain of order unity,more » corresponding to a mechanically fragile entanglement tube field. However, for unrelaxed stretched chains, tube compression stabilizes transverse polymer confinement, and there appears to be no force imbalance. These results collectively suggest that the crossover from elastic to irreversible viscous response requires chain retraction to initiate disentanglement. Finally, we qualitatively discuss comparisons with existing phenomenological models for nonlinear startup shear, step strain, and creep rheology experiments.« less
 [1] ;  [2]
  1. Univ. of Illinois, Urbana, IL (United States). Dept. of Materials Science. Dept. of Chemistry
  2. Syracuse Univ., NY (United States). Dept. of Physics
Publication Date:
Grant/Contract Number:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 145; Journal Issue: 21; Journal ID: ISSN 0021-9606
American Institute of Physics (AIP)
Research Org:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
74 ATOMIC AND MOLECULAR PHYSICS; diffusion; polymers; retraction; reptation; tube theories; elasticity; shear deformation; mean field theory; free energy; nonlinear dynamics
OSTI Identifier:
Alternate Identifier(s):
OSTI ID: 1334367