skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulations of relativistic quantum plasmas using real-time lattice scalar QED

Abstract

Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, andmore » the ensemble may also be computed using quantum parallelism in the future.« less

Authors:
 [1];  [2];  [3];  [1]
  1. Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  2. Univ. of Science and Technology of China, Hefei (China). School of Nuclear Science and Technology and Dept. of Modern Physics
  3. Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Univ. of Science and Technology of China, Hefei (China). School of Nuclear Science and Technology and Dept. of Modern Physics
Publication Date:
Research Org.:
Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); National Natural Science Foundation of China (NNSFC); Japan Society for the Promotion of Science (JSPS); Chinese Scholar Council (CSC); Chinese Academy of Sciences (CAS)
OSTI Identifier:
1465665
Alternate Identifier(s):
OSTI ID: 1436538
Grant/Contract Number:  
NA0002948; AC02-09CH11466; NSFC-11575185; 11575186; 11305171; NSFC-11261140328; QYZDB-SSW-SYS004; 201506340103; 2015GB111003; 2014GB124005
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Volume: 97; Journal Issue: 5; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; laser-plasma interactions; lattice field theory; lattice gauge theory; nonlinear phenomena in plasmas; nonperturbative effects in field theory; particle acceleration in plasmas; radiation and particle generation in plasmas

Citation Formats

Shi, Yuan, Xiao, Jianyuan, Qin, Hong, and Fisch, Nathaniel J. Simulations of relativistic quantum plasmas using real-time lattice scalar QED. United States: N. p., 2018. Web. doi:10.1103/PhysRevE.97.053206.
Shi, Yuan, Xiao, Jianyuan, Qin, Hong, & Fisch, Nathaniel J. Simulations of relativistic quantum plasmas using real-time lattice scalar QED. United States. doi:10.1103/PhysRevE.97.053206.
Shi, Yuan, Xiao, Jianyuan, Qin, Hong, and Fisch, Nathaniel J. Wed . "Simulations of relativistic quantum plasmas using real-time lattice scalar QED". United States. doi:10.1103/PhysRevE.97.053206. https://www.osti.gov/servlets/purl/1465665.
@article{osti_1465665,
title = {Simulations of relativistic quantum plasmas using real-time lattice scalar QED},
author = {Shi, Yuan and Xiao, Jianyuan and Qin, Hong and Fisch, Nathaniel J.},
abstractNote = {Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may also be computed using quantum parallelism in the future.},
doi = {10.1103/PhysRevE.97.053206},
journal = {Physical Review E},
number = 5,
volume = 97,
place = {United States},
year = {2018},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Discretization of the txy-submanifold of spacetime using a rectangular lattice. The discrete function v lives on the vertexes (blue squares). For example, ∅$n\atop{i,j,k}$ ∅ (tn, xi, yj , zk) lives on the vertex (n, i, j, k). The discrete 1-form Ae lives along edges (red circles). For example,more » the t-component A$n+1/2\atop{i+1,j,k}$ = A0(tn + Δt/2,xi+1, yj, zk) lives along the time-like edge connecting vertexes (n, i + 1, j, k) and (n + 1, i + 1, j, k)), and the x-component A$n\atop{i+1/2,j,k}$ = –A1(tn, xi + Δx/2, yj, zk) lives along the space-like edge connecting vertexes (n, i, j, k) and (n, i + j, k). The discrete 2-form Fƒ lives on faces (green crosses). For example, electric field e$n+1/2\atop{i+1/2,j,k}$ = Ex(tn + Δt/2, xi + Δx/2, yj, zk lives on the time-like face spanned by vertexes (n, i, j, k)), (n + 1, i, j, k)) (n + 1, i + 1, j, k)) and (n, i + 1, j, k)); magnetic field B$n+1\atop{i+1/2,j+1/2,k}$ = Bz(tn+1, xi + Δx/2, yi + Δy/2, zk) lives on the space-like face spanned by vertexes (n + 1, i, j, k)), (n + 1, i, j, + l,k)), (n + 1, i + 1, j + 1, k)) and (n + 1, i + 1, j, k)) and (n, i + 1, j, k));« less

Save / Share:

Works referenced in this record:

Laser Field Absorption in Self-Generated Electron-Positron Pair Plasma
journal, January 2011


Pair Production by Ultraintense Lasers
journal, November 1998


Momentum Signatures for Schwinger Pair Production in Short Laser Pulses with a Subcycle Structure
journal, April 2009


Boltzmann equation in classical and quantum field theory
journal, July 2005


Quantum Effects with an X-Ray Free-Electron Laser
journal, September 2002


High e+/e− Ratio Dense Pair Creation with 1021W.cm−2 Laser Irradiating Solid Targets
journal, September 2015

  • Liang, E.; Clarke, T.; Henderson, A.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep13968

Isolated attosecond pulses generated by relativistic effects in a wavelength-cubed focal volume
journal, January 2004

  • Naumova, Natalia M.; Nees, John A.; Hou, Bixue
  • Optics Letters, Vol. 29, Issue 7
  • DOI: 10.1364/OL.29.000778

Laser wake field acceleration: the highly non-linear broken-wave regime
journal, April 2002

  • Pukhov, A.; Meyer-ter-Vehn, J.
  • Applied Physics B: Lasers and Optics, Vol. 74, Issue 4-5
  • DOI: 10.1007/s003400200795

Fermion production from real-time lattice gauge theory in the classical-statistical regime
journal, July 2014


Electron acceleration by a laser pulse in a plasma
journal, August 1996


Quantum versus classical statistical dynamics of an ultracold Bose gas
journal, September 2007


An introduction to chiral symmetry on the lattice
journal, October 2004


Frequency Up-Conversion of Electromagnetic Radiation with Use of an Overdense Plasma
journal, July 1988


Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory
journal, November 2010


On Gauge Invariance and Vacuum Polarization
journal, June 1951


Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations
journal, December 2015


Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media
journal, May 1966


Quantum mechanical computers
journal, June 1986


Classical Aspects of Quantum Fields Far from Equilibrium
journal, January 2002


Basin of attraction for turbulent thermalization and the range of validity of classical-statistical simulations
journal, May 2014

  • Berges, J.; Boguslavski, K.; Schlichting, S.
  • Journal of High Energy Physics, Vol. 2014, Issue 5
  • DOI: 10.1007/JHEP05(2014)054

A no-go theorem for regularizing chiral fermions
journal, October 1981


Response theory of particle-anti-particle plasmas
journal, September 1985


Simulating fermion production in 1 + 1 dimensional QED
journal, May 2013


Formulation of the Schwinger mechanism in classical statistical field theory
journal, June 2013


Generation of neutral and high-density electron–positron pair plasmas in the laboratory
journal, April 2015

  • Sarri, G.; Poder, K.; Cole, J. M.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7747

Monte Carlo calculations of pair production in high-intensity laser–plasma interactions
journal, November 2010


Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
journal, November 2015

  • Xiao, Jianyuan; Qin, Hong; Liu, Jian
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935904

Signatures of quark-gluon plasma formation in high energy heavy-ion collisions: a critical review
journal, January 1999

  • Bass, S. A.; Gyulassy, M.; Stöcker, H.
  • Journal of Physics G: Nuclear and Particle Physics, Vol. 25, Issue 3
  • DOI: 10.1088/0954-3899/25/3/013

Quantum corrections to the dynamics of interacting bosons: Beyond the truncated Wigner approximation
journal, November 2003


Relativistic charged Bose gas
journal, December 1978


Colour deconfinement in nuclear collisions
journal, August 2000


Monte Carlo study of quantized SU(2) gauge theory
journal, April 1980


Dense Electron-Positron Plasmas and Ultraintense γ rays from Laser-Irradiated Solids
journal, April 2012


Damping of linear waves via ionization and recombination in homogeneous plasmas
journal, November 2010

  • Dodin, I. Y.; Fisch, N. J.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3514166

Relativistic laser-plasma interactions in the quantum regime
journal, April 2011


A variational multi-symplectic particle-in-cell algorithm with smoothing functions for the Vlasov-Maxwell system
journal, October 2013

  • Xiao, Jianyuan; Liu, Jian; Qin, Hong
  • Physics of Plasmas, Vol. 20, Issue 10
  • DOI: 10.1063/1.4826218

High-Energy Trident Production with Definite Helicities
journal, February 1967


Real-time dynamics with fermions on a lattice
journal, August 1999


Real-Time Dynamics of String Breaking
journal, November 2013


Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
journal, June 2016

  • Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp
  • Nature, Vol. 534, Issue 7608
  • DOI: 10.1038/nature18318

Low-cost fermions in classical field simulations
journal, March 2009


Confinement of quarks
journal, October 1974


Ponderomotive acceleration of hot electrons in tenuous plasmas
journal, September 2009


On the equivalence between the Boltzmann equation and classical field theory at large occupation numbers
journal, March 2004


Zitterbewegung and the Klein paradox for spin‐zero particles
journal, June 1982

  • Fuda, Michael G.; Furlani, Edward
  • American Journal of Physics, Vol. 50, Issue 6
  • DOI: 10.1119/1.12819

Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations
journal, September 2016


Anomaly-Induced Dynamical Refringence in Strong-Field QED
journal, August 2016


On the Stopping of Fast Particles and on the Creation of Positive Electrons
journal, August 1934

  • Bethe, H.; Heitler, W.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 146, Issue 856
  • DOI: 10.1098/rspa.1934.0140

Discretizing the Maxwell-Klein-Gordon equation by the lattice gauge theory formalism
journal, September 2009

  • Christiansen, S. H.; Halvorsen, T. G.
  • IMA Journal of Numerical Analysis, Vol. 31, Issue 1
  • DOI: 10.1093/imanum/drp019

Generating positrons with femtosecond-laser pulses
journal, October 2000

  • Gahn, C.; Tsakiris, G. D.; Pretzler, G.
  • Applied Physics Letters, Vol. 77, Issue 17
  • DOI: 10.1063/1.1319526

Quantum Vlasov equation and its Markov limit
journal, November 1998


Collision of Two Light Quanta
journal, December 1934


Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories
journal, July 2013


Effective-action approach to wave propagation in scalar QED plasmas
journal, July 2016


Universal Quantum Simulators
journal, August 1996


Brownian Motion of a Quantum Oscillator
journal, May 1961

  • Schwinger, Julian
  • Journal of Mathematical Physics, Vol. 2, Issue 3
  • DOI: 10.1063/1.1703727

Dynamically Assisted Schwinger Mechanism
journal, September 2008


A Quantum Kinetic Equation for Particle Production in the Schwinger Mechanism
journal, December 1998

  • Schmidt, S.; Blaschke, D.; Röpke, G.
  • International Journal of Modern Physics E, Vol. 07, Issue 06
  • DOI: 10.1142/S0218301398000403

Pair production in a strong wake field driven by an intense short laser pulse
journal, November 1992


Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
journal, August 2012

  • Squire, J.; Qin, H.; Tang, W. M.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4742985

Pair production beyond the Schwinger formula in time-dependent electric fields
journal, September 2008


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.