skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficient solar-driven electrochemical CO 2 reduction to hydrocarbons and oxygenates

Abstract

Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO 2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO 2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hungarian Academy of Sciences Centre for Energy Research, Budapest (Hungary)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1465416
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 10; Journal Issue: 10; Related Information: © The Royal Society of Chemistry.; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gurudayal, Gurudayal, Bullock, James, Srankó, Dávid F., Towle, Clarissa M., Lum, Yanwei, Hettick, Mark, Scott, M. C., Javey, Ali, and Ager, Joel. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. United States: N. p., 2017. Web. doi:10.1039/c7ee01764b.
Gurudayal, Gurudayal, Bullock, James, Srankó, Dávid F., Towle, Clarissa M., Lum, Yanwei, Hettick, Mark, Scott, M. C., Javey, Ali, & Ager, Joel. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. United States. doi:10.1039/c7ee01764b.
Gurudayal, Gurudayal, Bullock, James, Srankó, Dávid F., Towle, Clarissa M., Lum, Yanwei, Hettick, Mark, Scott, M. C., Javey, Ali, and Ager, Joel. Thu . "Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates". United States. doi:10.1039/c7ee01764b. https://www.osti.gov/servlets/purl/1465416.
@article{osti_1465416,
title = {Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates},
author = {Gurudayal, Gurudayal and Bullock, James and Srankó, Dávid F. and Towle, Clarissa M. and Lum, Yanwei and Hettick, Mark and Scott, M. C. and Javey, Ali and Ager, Joel},
abstractNote = {Solar to chemical energy conversion could provide an alternative to mankind's unsustainable use of fossil fuels. One promising approach is the electrochemical reduction of CO2 into chemical products, in particular hydrocarbons and oxygenates which are formed by multi-electron transfer reactions. Here, a nanostructured Cu-Ag bimetallic cathode is utilized to selectively and efficiently facilitate these reactions. When operated in an electrolysis cell, the cathode provides a constant energetic efficiency for hydrocarbon and oxygenate production. As a result, when coupled to Si photovoltaic cells, solar conversion efficiencies of 3-4% to the target products are achieved for 0.35 to 1 Sun illumination. Use of a four-terminal III-V/Si tandem solar cell configuration yields a conversion efficiency to hydrocarbons and oxygenates exceeding 5% at 1 Sun illumination. Here, this study provides a clear framework for the future advancement of efficient solar-driven CO2 reduction devices.In a process analogous to natural photosynthesis, solar-driven reduction of carbon dioxide to hydrocarbon and oxygenate products is demonstrated with an overall efficiency exceeding 5%.},
doi = {10.1039/c7ee01764b},
journal = {Energy & Environmental Science},
number = 10,
volume = 10,
place = {United States},
year = {2017},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 28 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
journal, April 2012

  • Li, Christina W.; Kanan, Matthew W.
  • Journal of the American Chemical Society, Vol. 134, Issue 17, p. 7231-7234
  • DOI: 10.1021/ja3010978

A Highly Selective Copper-Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO 2 to CO
journal, December 2014

  • Rasul, Shahid; Anjum, Dalaver H.; Jedidi, Abdesslem
  • Angewandte Chemie International Edition, Vol. 54, Issue 7
  • DOI: 10.1002/anie.201410233

Hydrolysis of Electrolyte Cations Enhances the Electrochemical Reduction of CO 2 over Ag and Cu
journal, September 2016

  • Singh, Meenesh R.; Kwon, Youngkook; Lum, Yanwei
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b07612

A monolithic device for CO 2 photoreduction to generate liquid organic substances in a single-compartment reactor
journal, January 2015

  • Arai, Takeo; Sato, Shunsuke; Morikawa, Takeshi
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE01314C

ZnO nanorods for solar cells: Hydrothermal growth versus vapor deposition
journal, March 2008

  • Hsu, Y. F.; Xi, Y. Y.; Djurišić, A. B.
  • Applied Physics Letters, Vol. 92, Issue 13
  • DOI: 10.1063/1.2906370

Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer
journal, January 2011

  • Arai, Takeo; Tajima, Shin; Sato, Shunsuke
  • Chemical Communications, Vol. 47, Issue 47
  • DOI: 10.1039/c1cc16160a

Electrochemical Reduction of Carbon Dioxide at Gold-Palladium Core-Shell Nanoparticles: Product Distribution versus Shell Thickness
journal, January 2016

  • Humphrey, Jo J. L.; Plana, Daniela; Celorrio, Verónica
  • ChemCatChem, Vol. 8, Issue 5
  • DOI: 10.1002/cctc.201501260

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
journal, April 2014

  • Li, Christina W.; Ciston, Jim; Kanan, Matthew W.
  • Nature, Vol. 508, Issue 7497
  • DOI: 10.1038/nature13249

Grain-Boundary-Dependent CO 2 Electroreduction Activity
journal, April 2015

  • Feng, Xiaofeng; Jiang, Kaili; Fan, Shoushan
  • Journal of the American Chemical Society, Vol. 137, Issue 14
  • DOI: 10.1021/ja5130513

Effects of temperature and gas–liquid mass transfer on the operation of small electrochemical cells for the quantitative evaluation of CO 2 reduction electrocatalysts
journal, January 2016

  • Lobaccaro, Peter; Singh, Meenesh R.; Clark, Ezra Lee
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 38
  • DOI: 10.1039/C6CP05287H

Materials for solar fuels and chemicals
journal, December 2016

  • Montoya, Joseph H.; Seitz, Linsey C.; Chakthranont, Pongkarn
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4778

The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Realization of GaInP/Si Dual-Junction Solar Cells With 29.8% 1-Sun Efficiency
journal, July 2016


Optimizing C–C Coupling on Oxide-Derived Copper Catalysts for Electrochemical CO 2 Reduction
journal, June 2017

  • Lum, Yanwei; Yue, Binbin; Lobaccaro, Peter
  • The Journal of Physical Chemistry C, Vol. 121, Issue 26
  • DOI: 10.1021/acs.jpcc.7b03673

Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics
journal, June 2015

  • Schreier, Marcel; Curvat, Laura; Giordano, Fabrizio
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8326

Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
journal, January 2015

  • Ager, Joel W.; Shaner, Matthew R.; Walczak, Karl A.
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE00457H

Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide
journal, January 2015

  • Singh, Meenesh R.; Clark, Ezra L.; Bell, Alexis T.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 29
  • DOI: 10.1039/C5CP03283K

Solar conversion of CO2 to CO using Earth-abundant electrocatalysts prepared by atomic layer modification of CuO
journal, June 2017

  • Schreier, Marcel; Héroguel, Florent; Steier, Ludmilla
  • Nature Energy, Vol. 2, Issue 7
  • DOI: 10.1038/nenergy.2017.87

An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation
journal, July 2015


Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures
journal, March 2017

  • Young, James L.; Steiner, Myles A.; Döscher, Henning
  • Nature Energy, Vol. 2, Issue 4
  • DOI: 10.1038/nenergy.2017.28

Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction
journal, December 2010

  • Whipple, Devin T.; Kenis, Paul J. A.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 24, p. 3451-3458
  • DOI: 10.1021/jz1012627

Monolithic cells for solar fuels
journal, January 2014

  • Rongé, Jan; Bosserez, Tom; Martel, David
  • Chem. Soc. Rev., Vol. 43, Issue 23
  • DOI: 10.1039/C3CS60424A

Renewable fuels from concentrated solar power: towards practical artificial photosynthesis
journal, January 2015

  • Bonke, Shannon A.; Wiechen, Mathias; MacFarlane, Douglas R.
  • Energy & Environmental Science, Vol. 8, Issue 9
  • DOI: 10.1039/C5EE02214B

Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
journal, May 2011

  • Blankenship, R. E.; Tiede, D. M.; Barber, J.
  • Science, Vol. 332, Issue 6031, p. 805-809
  • DOI: 10.1126/science.1200165

Product Selectivity Affected by Cationic Species in Electrochemical Reduction of CO 2 and CO at a Cu Electrode
journal, January 1991

  • Murata, Akira; Hori, Yoshio
  • Bulletin of the Chemical Society of Japan, Vol. 64, Issue 1
  • DOI: 10.1246/bcsj.64.123

Sustainable hydrocarbon fuels by recycling CO 2 and H 2 O with renewable or nuclear energy
journal, January 2011

  • Graves, Christopher; Ebbesen, Sune D.; Mogensen, Mogens
  • Renewable and Sustainable Energy Reviews, Vol. 15, Issue 1
  • DOI: 10.1016/j.rser.2010.07.014

    Works referencing / citing this record:

    Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO 2 to CO
    journal, July 2019

    • Zhang, Hai‐Xia; Hong, Qin‐Long; Li, Jing
    • Angewandte Chemie, Vol. 131, Issue 34
    • DOI: 10.1002/ange.201905869

    Clean hydrogen generation and storage strategies via CO 2 utilization into chemicals and fuels: A review
    journal, March 2019

    • Bahari, Nurazni Amat; Wan Isahak, Wan Nor Roslam; Masdar, Mohd Shahbudin
    • International Journal of Energy Research, Vol. 43, Issue 10
    • DOI: 10.1002/er.4498

    A review of gasification of bio-oil for gas production
    journal, January 2019

    • Zheng, Ji-Lu; Zhu, Ya-Hong; Zhu, Ming-Qiang
    • Sustainable Energy & Fuels, Vol. 3, Issue 7
    • DOI: 10.1039/c8se00553b

    Isolated Square‐Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO 2 to CO
    journal, July 2019

    • Zhang, Hai‐Xia; Hong, Qin‐Long; Li, Jing
    • Angewandte Chemie, Vol. 131, Issue 34
    • DOI: 10.1002/ange.201905869

    Clean hydrogen generation and storage strategies via CO 2 utilization into chemicals and fuels: A review
    journal, March 2019

    • Bahari, Nurazni Amat; Wan Isahak, Wan Nor Roslam; Masdar, Mohd Shahbudin
    • International Journal of Energy Research, Vol. 43, Issue 10
    • DOI: 10.1002/er.4498

    A review of gasification of bio-oil for gas production
    journal, January 2019

    • Zheng, Ji-Lu; Zhu, Ya-Hong; Zhu, Ming-Qiang
    • Sustainable Energy & Fuels, Vol. 3, Issue 7
    • DOI: 10.1039/c8se00553b