DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of an anti-reflecting nanowire transparent electrode for solar cells

Abstract

Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this study, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry–Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Finally, our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.

Authors:
 [1];  [2];  [1]
  1. Stanford Univ., CA (United States). Dept. of Electrical Engineering. Ginzton Lab.
  2. Stanford Univ., CA (United States). Dept. of Applied Physics
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center on Nanostructuring for Efficient Energy Conversion (CNEEC); Stanford Univ., CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1465331
Alternate Identifier(s):
OSTI ID: 1348040
Grant/Contract Number:  
SC0001060
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 121; Journal Issue: 11; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; silicon; nanowires; polarization; light diffraction; antireflective coatings; solar cells; electrodes; silver; reflection coefficient

Citation Formats

Zhao, Zhexin, Wang, Ken Xingze, and Fan, Shanhui. Analysis of an anti-reflecting nanowire transparent electrode for solar cells. United States: N. p., 2017. Web. doi:10.1063/1.4978769.
Zhao, Zhexin, Wang, Ken Xingze, & Fan, Shanhui. Analysis of an anti-reflecting nanowire transparent electrode for solar cells. United States. https://doi.org/10.1063/1.4978769
Zhao, Zhexin, Wang, Ken Xingze, and Fan, Shanhui. Tue . "Analysis of an anti-reflecting nanowire transparent electrode for solar cells". United States. https://doi.org/10.1063/1.4978769. https://www.osti.gov/servlets/purl/1465331.
@article{osti_1465331,
title = {Analysis of an anti-reflecting nanowire transparent electrode for solar cells},
author = {Zhao, Zhexin and Wang, Ken Xingze and Fan, Shanhui},
abstractNote = {Transparent electrodes are an important component in many optoelectronic devices, especially solar cells. In this study, we investigate a nanowire transparent electrode that also functions as an anti-reflection coating for silicon solar cells, taking into account the practical constraints that the electrode is typically encapsulated and needs to be in electric contact with the semiconductor. Numerical simulations show that the electrode can provide near-perfect broadband anti-reflection over much of the frequency range above the silicon band gap for both polarizations while keeping the sheet resistance sufficiently low. To provide insights into the physics mechanism of this broadband anti-reflection, we introduce a generalized Fabry–Perot model, which captures the effects of the higher order diffraction channels as well as the modification of the reflection coefficient of the interface introduced by the nanowires. This model is validated using frequency-domain electromagnetic simulations. Finally, our work here provides design guidelines for nanowire transparent electrode in a device configuration that is relevant for solar cell applications.},
doi = {10.1063/1.4978769},
journal = {Journal of Applied Physics},
number = 11,
volume = 121,
place = {United States},
year = {Tue Mar 21 00:00:00 EDT 2017},
month = {Tue Mar 21 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Transparent Conducting Silver Nanowire Networks
journal, May 2012

  • van de Groep, Jorik; Spinelli, Pierpaolo; Polman, Albert
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl301045a

Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells
journal, October 2012

  • Massiot, Inès; Colin, Clément; Péré-Laperne, Nicolas
  • Applied Physics Letters, Vol. 101, Issue 16
  • DOI: 10.1063/1.4758468

Size-dependent resistivity of metallic wires in the mesoscopic range
journal, August 2002

  • Steinhögl, Werner; Schindler, Günther; Steinlesberger, Gernot
  • Physical Review B, Vol. 66, Issue 7
  • DOI: 10.1103/PhysRevB.66.075414

Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices
journal, August 2010

  • Catrysse, Peter B.; Fan, Shanhui
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl1011239

Metal Nanogrid for Broadband Multiresonant Light-Harvesting in Ultrathin GaAs Layers
journal, September 2014

  • Massiot, Inès; Vandamme, Nicolas; Bardou, Nathalie
  • ACS Photonics, Vol. 1, Issue 9
  • DOI: 10.1021/ph500168b

Reflection of normally incident light from silicon solar cells with pyramidal texture
journal, October 2010

  • Baker-Finch, Simeon C.; McIntosh, Keith R.
  • Progress in Photovoltaics: Research and Applications, Vol. 19, Issue 4
  • DOI: 10.1002/pip.1050

Past achievements and future challenges in the development of optically transparent electrodes
journal, November 2012


Substrate effects on the transmittance of 1D metal grid transparent electrodes
journal, January 2014


Enhancing the optical transmittance by using circular silver nanowire networks
journal, May 2014

  • Xie, Shouyi; Ouyang, Zi; Stokes, Nicholas
  • Journal of Applied Physics, Vol. 115, Issue 19
  • DOI: 10.1063/1.4876676

Graphene as Transparent Electrode Material for Organic Electronics
journal, April 2011

  • Pang, Shuping; Hernandez, Yenny; Feng, Xinliang
  • Advanced Materials, Vol. 23, Issue 25
  • DOI: 10.1002/adma.201100304

Condition for perfect antireflection by optical resonance at material interface
journal, January 2014


Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires
journal, January 2013

  • Massiot, Inès; Colin, Clément; Sauvan, Christophe
  • Optics Express, Vol. 21, Issue S3
  • DOI: 10.1364/OE.21.00A372

S4 : A free electromagnetic solver for layered periodic structures
journal, October 2012


Solution-Grown Silver Nanowire Ordered Arrays as Transparent Electrodes
journal, December 2015

  • Sciacca, Beniamino; van de Groep, Jorik; Polman, Albert
  • Advanced Materials, Vol. 28, Issue 5
  • DOI: 10.1002/adma.201504045

Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells
journal, August 1980

  • Henry, C. H.
  • Journal of Applied Physics, Vol. 51, Issue 8
  • DOI: 10.1063/1.328272

Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures
journal, February 2011

  • Hecht, David S.; Hu, Liangbing; Irvin, Glen
  • Advanced Materials, Vol. 23, Issue 13, p. 1482-1513
  • DOI: 10.1002/adma.201003188

The mean free path of electrons in metals
journal, September 2001


Solution-Processed Metal Nanowire Mesh Transparent Electrodes
journal, February 2008

  • Lee, Jung-Yong; Connor, Stephen T.; Cui, Yi
  • Nano Letters, Vol. 8, Issue 2, p. 689-692
  • DOI: 10.1021/nl073296g

A New Transparent Conductor: Silver Nanowire Film Buried at the Surface of a Transparent Polymer
journal, August 2010

  • Zeng, Xiao-Yan; Zhang, Qi-Kai; Yu, Rong-Min
  • Advanced Materials, Vol. 22, Issue 40, p. 4484-4488
  • DOI: 10.1002/adma.201001811

The role of propagating modes in silver nanowire arrays for transparent electrodes
journal, January 2013


High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid
journal, January 2010

  • Ghosh, D. S.; Chen, T. L.; Pruneri, V.
  • Applied Physics Letters, Vol. 96, Issue 4
  • DOI: 10.1063/1.3299259

Effectively transparent contacts (ETCs) for solar cells
conference, June 2016

  • Saive, Rebecca; Bukowsky, Colton R.; Yalamanchili, Sisir
  • 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
  • DOI: 10.1109/PVSC.2016.7750346

Organic solar cells with carbon nanotube network electrodes
journal, June 2006

  • Rowell, Michael W.; Topinka, Mark A.; McGehee, Michael D.
  • Applied Physics Letters, Vol. 88, Issue 23
  • DOI: 10.1063/1.2209887

Large-scale pattern growth of graphene films for stretchable transparent electrodes
journal, January 2009


Flash-Induced Self-Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester
journal, November 2016

  • Park, Jung Hwan; Hwang, Geon-Tae; Kim, Shinho
  • Advanced Materials, Vol. 29, Issue 5
  • DOI: 10.1002/adma.201603473

Large Integrated Absorption Enhancement in Plasmonic Solar Cells by Combining Metallic Gratings and Antireflection Coatings
journal, June 2011

  • Munday, Jeremy N.; Atwater, Harry A.
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl101875t

Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells
journal, May 2010

  • Zou, Jingyu; Yip, Hin-Lap; Hau, Steven K.
  • Applied Physics Letters, Vol. 96, Issue 20
  • DOI: 10.1063/1.3394679

Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode
journal, June 2006

  • van de Lagemaat, Jao; Barnes, Teresa M.; Rumbles, Garry
  • Applied Physics Letters, Vol. 88, Issue 23
  • DOI: 10.1063/1.2210081

Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers
journal, April 2012


Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells
journal, January 2008

  • Wang, Xuan; Zhi, Linjie; Müllen, Klaus
  • Nano Letters, Vol. 8, Issue 1, p. 323-327
  • DOI: 10.1021/nl072838r

Roll-to-roll production of 30-inch graphene films for transparent electrodes
journal, June 2010

  • Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin
  • Nature Nanotechnology, Vol. 5, Issue 8, p. 574-578
  • DOI: 10.1038/nnano.2010.132

Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes
journal, March 2010

  • Hu, Liangbing; Kim, Han Sun; Lee, Jung-Yong
  • ACS Nano, Vol. 4, Issue 5, p. 2955-2963
  • DOI: 10.1021/nn1005232

CRC Handbook of Chemistry and Physics
book, June 2014


Works referencing / citing this record: