DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes

Abstract

Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intracellular and extracellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multisite optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multisite/multicolor optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cellmore » type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.« less

Authors:
 [1];  [2];  [3];  [4];  [2];  [3];  [2];  [5];  [5]
  1. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Biomedical Engineering; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Center for Micro and Nanotechnology
  2. New York Univ. (NYU), NY (United States). NYU Neuroscience Inst. School of Medicine
  3. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Electrical Engineering and Computer Science
  4. Tel Aviv Univ. (Israel). Dept. of Physiology and Pharmacology. Sackler Faculty of Medicine. Sagol School of Neuroscience
  5. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Biomedical Engineering. Dept. of Electrical Engineering and Computer Science
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Univ. of Michigan, Ann Arbor, MI (United States); New York Univ. (NYU), NY (United States); Tel Aviv Univ. (Israel)
Sponsoring Org.:
USDOE; National Inst. of Health (NIH) (United States); European Research Council (ERC)
OSTI Identifier:
1465313
Report Number(s):
LLNL-JRNL-747557
Journal ID: ISSN 2055-7434; 932565
Grant/Contract Number:  
AC52-07NA27344; 1-U01-NS090526-01; ERC-2015-StG 679253
Resource Type:
Accepted Manuscript
Journal Name:
Microsystems & Nanoengineering (Online)
Additional Journal Information:
Journal Name: Microsystems & Nanoengineering (Online); Journal Volume: 4; Journal ID: ISSN 2055-7434
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; biosensors; electrical and electronic engineering; micro-optics; optical sensors

Citation Formats

Kampasi, Komal, English, Daniel F., Seymour, John, Stark, Eran, McKenzie, Sam, Vöröslakos, Mihály, Buzsáki, György, Wise, Kensall D., and Yoon, Euisik. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. United States: N. p., 2018. Web. doi:10.1038/s41378-018-0009-2.
Kampasi, Komal, English, Daniel F., Seymour, John, Stark, Eran, McKenzie, Sam, Vöröslakos, Mihály, Buzsáki, György, Wise, Kensall D., & Yoon, Euisik. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes. United States. https://doi.org/10.1038/s41378-018-0009-2
Kampasi, Komal, English, Daniel F., Seymour, John, Stark, Eran, McKenzie, Sam, Vöröslakos, Mihály, Buzsáki, György, Wise, Kensall D., and Yoon, Euisik. Mon . "Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes". United States. https://doi.org/10.1038/s41378-018-0009-2. https://www.osti.gov/servlets/purl/1465313.
@article{osti_1465313,
title = {Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes},
author = {Kampasi, Komal and English, Daniel F. and Seymour, John and Stark, Eran and McKenzie, Sam and Vöröslakos, Mihály and Buzsáki, György and Wise, Kensall D. and Yoon, Euisik},
abstractNote = {Optogenetics allows for optical manipulation of neuronal activity and has been increasingly combined with intracellular and extracellular electrophysiological recordings. Genetically-identified classes of neurons are optically manipulated, though the versatility of optogenetics would be increased if independent control of distinct neural populations could be achieved on a sufficient spatial and temporal resolution. We report a scalable multisite optoelectrode design that allows simultaneous optogenetic control of two spatially intermingled neuronal populations in vivo. We describe the design, fabrication, and assembly of low-noise, multisite/multicolor optoelectrodes. Each shank of the four-shank assembly is monolithically integrated with 8 recording sites and a dual-color waveguide mixer with a 7 × 30 μm cross-section, coupled to 405 nm and 635 nm injection laser diodes (ILDs) via gradient-index (GRIN) lenses to meet optical and thermal design requirements. To better understand noise on the recording channels generated during diode-based activation, we developed a lumped-circuit modeling approach for EMI coupling mechanisms and used it to limit artifacts to amplitudes under 100 μV upto an optical output power of 450 μW. We implanted the packaged devices into the CA1 pyramidal layer of awake mice, expressing Channelrhodopsin-2 in pyramidal cells and ChrimsonR in paravalbumin-expressing interneurons, and achieved optical excitation of each cell type using sub-mW illumination. We highlight the potential use of this technology for functional dissection of neural circuits.},
doi = {10.1038/s41378-018-0009-2},
journal = {Microsystems & Nanoengineering (Online)},
number = ,
volume = 4,
place = {United States},
year = {Mon Jun 04 00:00:00 EDT 2018},
month = {Mon Jun 04 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 60 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Multimodal fast optical interrogation of neural circuitry
journal, April 2007

  • Zhang, Feng; Wang, Li-Ping; Brauner, Martin
  • Nature, Vol. 446, Issue 7136
  • DOI: 10.1038/nature05744

Using temperature to analyse temporal dynamics in the songbird motor pathway
journal, November 2008


Effects of temperature alterations on population and cellular activities in hippocampal slices from mature and immature rabbit
journal, December 1988


Silicon microsystems for neuroscience and neural prostheses
journal, September 2005


Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses
journal, December 2005


EMI due to electric field coupling on PCB
conference, January 1998

  • Pong, M. H.; Lee, C. M.; Wu, X.
  • Power Electronics Specialist Conference - PESC'98, PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No.98CH36196)
  • DOI: 10.1109/PESC.1998.703145

Klusters, NeuroScope, NDManager: A free software suite for neurophysiological data processing and visualization
journal, September 2006


Millisecond-timescale, genetically targeted optical control of neural activity
journal, August 2005

  • Boyden, Edward S.; Zhang, Feng; Bamberg, Ernst
  • Nature Neuroscience, Vol. 8, Issue 9
  • DOI: 10.1038/nn1525

Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations
journal, July 2014


An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology
journal, May 2007

  • Aravanis, Alexander M.; Wang, Li-Ping; Zhang, Feng
  • Journal of Neural Engineering, Vol. 4, Issue 3
  • DOI: 10.1088/1741-2560/4/3/S02

Optetrode: a multichannel readout for optogenetic control in freely moving mice
journal, December 2011

  • Anikeeva, Polina; Andalman, Aaron S.; Witten, Ilana
  • Nature Neuroscience, Vol. 15, Issue 1
  • DOI: 10.1038/nn.2992

Independent optical excitation of distinct neural populations
journal, February 2014

  • Klapoetke, Nathan C.; Murata, Yasunobu; Kim, Sung Soo
  • Nature Methods, Vol. 11, Issue 3
  • DOI: 10.1038/nmeth.2836

Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons
journal, June 2013

  • Pfeffer, Carsten K.; Xue, Mingshan; He, Miao
  • Nature Neuroscience, Vol. 16, Issue 8
  • DOI: 10.1038/nn.3446

Optogenetics
journal, December 2010


Multisite silicon neural probes with integrated silicon nitride waveguides and gratings for optogenetic applications
journal, March 2016

  • Shim, Euijae; Chen, Yu; Masmanidis, Sotiris
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep22693

Inhibition-Induced Theta Resonance in Cortical Circuits
journal, December 2013


Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry
journal, July 2010

  • Kravitz, Alexxai V.; Freeze, Benjamin S.; Parker, Philip R. L.
  • Nature, Vol. 466, Issue 7306
  • DOI: 10.1038/nature09159

An innovative bonding technique for optical chips using solder bumps that eliminate chip positioning adjustments
journal, April 1992

  • Hayashi, T.
  • IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 15, Issue 2
  • DOI: 10.1109/33.142898

Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles
journal, July 2011

  • Halassa, Michael M.; Siegle, Joshua H.; Ritt, Jason T.
  • Nature Neuroscience, Vol. 14, Issue 9
  • DOI: 10.1038/nn.2880

Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri
journal, April 2008

  • Zhang, Feng; Prigge, Matthias; Beyrière, Florent
  • Nature Neuroscience, Vol. 11, Issue 6
  • DOI: 10.1038/nn.2120

Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths
journal, December 2016

  • Poulton, Christopher V.; Byrd, Matthew J.; Raval, Manan
  • Optics Letters, Vol. 42, Issue 1
  • DOI: 10.1364/OL.42.000021

Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe
journal, June 2016

  • Scharf, Robert; Tsunematsu, Tomomi; McAlinden, Niall
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28381

Brain temperature and hippocampal function
journal, January 1995


Reducing EMI in switch mode power supplies
conference, January 1988


Let There Be Light—Optoprobes for Neural Implants
journal, January 2017


A polymer-based neural microimplant for optogenetic applications: design and first in vivo study
journal, January 2013

  • Rubehn, Birthe; Wolff, Steffen B. E.; Tovote, Philip
  • Lab on a Chip, Vol. 13, Issue 4
  • DOI: 10.1039/c2lc40874k

Large-scale nanophotonic phased array
journal, January 2013

  • Sun, Jie; Timurdogan, Erman; Yaacobi, Ami
  • Nature, Vol. 493, Issue 7431
  • DOI: 10.1038/nature11727

Investigation of the photoelectrochemical effect in optoelectrodes and potential uses for implantable electrode characterization*
conference, July 2013

  • Khurram, Abeer; Seymour, John P.
  • 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  • DOI: 10.1109/EMBC.2013.6610179

Tools for Probing Local Circuits: High-Density Silicon Probes Combined with Optogenetics
journal, April 2015


Local generation of multineuronal spike sequences in the hippocampal CA1 region
journal, August 2015

  • Stark, Eran; Roux, Lisa; Eichler, Ronny
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 33
  • DOI: 10.1073/pnas.1508785112

Multiwaveguide implantable probe for light delivery to sets of distributed brain targets
journal, January 2010

  • Zorzos, Anthony N.; Boyden, Edward S.; Fonstad, Clifton G.
  • Optics Letters, Vol. 35, Issue 24
  • DOI: 10.1364/OL.35.004133

Accurate simulation of conducted interferences in isolated DC to DC converters regarding to EMI standards
conference, January 1996

  • Laboure, E.; Costa, F.; Gautier, C.
  • PESC Record. 27th Annual IEEE Power Electronics Specialists Conference
  • DOI: 10.1109/PESC.1996.548851

Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics
journal, April 2013


Integrated multi-LED array with three-dimensional polymer waveguide for optogenetics
conference, January 2013


Bends in Optical Dielectric Guides
journal, September 1969


Scaling limitations of silicon multichannel recording probes
journal, January 1990

  • Najafi, K.; Ji, J.; Wise, K. D.
  • IEEE Transactions on Biomedical Engineering, Vol. 37, Issue 1
  • DOI: 10.1109/10.43605

An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications
journal, August 2013


Channelrhodopsin-2, a directly light-gated cation-selective membrane channel
journal, November 2003

  • Nagel, G.; Szellas, T.; Huhn, W.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 24
  • DOI: 10.1073/pnas.1936192100

Comparison Between Epi-Down and Epi-Up Bonded High-Power Single-Mode 980-nm Semiconductor Lasers
journal, November 2004


Patterned photostimulation via visible-wavelength photonic probes for deep brain optogenetics
journal, December 2016


A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing
journal, March 2012

  • Madisen, Linda; Mao, Tianyi; Koch, Henner
  • Nature Neuroscience, Vol. 15, Issue 5
  • DOI: 10.1038/nn.3078

Fluxless die bonding for optoelectronics
conference, January 1993

  • Boudreau, R.; Tabasky, M.; Armiento, C.
  • Proceedings of IEEE 43rd Electronic Components and Technology Conference (ECTC '93)
  • DOI: 10.1109/ECTC.1993.346801

Conducted EMI analysis of a boost PFC circuit
conference, January 1997

  • Wei Zhang, ; Zhang, M. T.; Lee, F. C.
  • Proceedings of APEC 97 - Applied Power Electronics Conference
  • DOI: 10.1109/APEC.1997.581457

High-performance genetically targetable optical neural silencing by light-driven proton pumps
journal, January 2010

  • Chow, Brian Y.; Han, Xue; Dobry, Allison S.
  • Nature, Vol. 463, Issue 7277
  • DOI: 10.1038/nature08652

Millisecond-Timescale Optical Control of Neural Dynamics in the Nonhuman Primate Brain
journal, April 2009


Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals
journal, July 2012

  • Stark, Eran; Koos, Tibor; Buzsáki, György
  • Journal of Neurophysiology, Vol. 108, Issue 1
  • DOI: 10.1152/jn.00153.2012

Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics
journal, June 2015


An improved chloride-conducting channelrhodopsin for light-induced inhibition of neuronal activity in vivo
journal, October 2015

  • Wietek, Jonas; Beltramo, Riccardo; Scanziani, Massimo
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14807

GaN-on-Si μLED optoelectrodes for high-spatiotemporal-accuracy optogenetics in freely behaving animals
conference, December 2016


Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications
conference, January 2013

  • Schwaerzle, M.; Seidl, K.; Schwarz, U. T.
  • 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS)
  • DOI: 10.1109/MEMSYS.2013.6474424

Works referencing / citing this record:

Brain Rhythms During Sleep and Memory Consolidation: Neurobiological Insights
journal, January 2020


Complex vectorial optics through gradient index lens cascades
journal, September 2019


Next-generation interfaces for studying neural function
journal, August 2019

  • Frank, James A.; Antonini, Marc-Joseph; Anikeeva, Polina
  • Nature Biotechnology, Vol. 37, Issue 9
  • DOI: 10.1038/s41587-019-0198-8

A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection
journal, August 2020


Complex vectorial optics through gradient index lens cascades
text, January 2019


A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection
journal, August 2020


Complex vectorial optics through gradient index lens cascades
journal, September 2019