skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cross-verification of the global gyrokinetic codes GENE and XGC

Abstract

A detailed cross-verification between two global gyrokinetic codes, the core continuum code GENE and the edge particle-in-cell code XGC, for the linear and nonlinear simulations of ion-temperature-gradient modes is carried out. With the recent developments in the edge gyrokinetics, it may be feasible someday to describe the whole tokamak plasma on turbulence timescales using a coupled gyrokinetic simulation model. Before pursuing this, the core code (GENE) and the edge code (XGC) must be carefully benchmarked with each other. The present verification provides a solid basis for future code coupling research. Also included in the benchmarking is the global particle-in-cell code ORB5, to raise the confidence in the quality of the obtained results. An excellent agreement between all three codes is obtained. Lastly, in order to facilitate a benchmark framework for other codes, we make a specific effort to provide all the relevant input parameters and precise details for each code.

Authors:
 [1]; ORCiD logo [2];  [2]; ORCiD logo [2];  [3];  [2];  [4];  [5]
  1. The Univ. of Texas at Austin, Austin, TX (United States)
  2. Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
  3. The Univ. of Texas at Austin, Austin, TX (United States); Max Planck Institute for Plasma Physics, Garching (Germany)
  4. Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)
  5. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1464510
Grant/Contract Number:  
17-SC-20-SC; AC05-00OR22725 and AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 6; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Merlo, G., Dominski, J., Bhattacharjee, A., Chang, C. S., Jenko, F., Ku, S., Lanti, E., and Parker, S. Cross-verification of the global gyrokinetic codes GENE and XGC. United States: N. p., 2018. Web. doi:10.1063/1.5036563.
Merlo, G., Dominski, J., Bhattacharjee, A., Chang, C. S., Jenko, F., Ku, S., Lanti, E., & Parker, S. Cross-verification of the global gyrokinetic codes GENE and XGC. United States. doi:10.1063/1.5036563.
Merlo, G., Dominski, J., Bhattacharjee, A., Chang, C. S., Jenko, F., Ku, S., Lanti, E., and Parker, S. Fri . "Cross-verification of the global gyrokinetic codes GENE and XGC". United States. doi:10.1063/1.5036563. https://www.osti.gov/servlets/purl/1464510.
@article{osti_1464510,
title = {Cross-verification of the global gyrokinetic codes GENE and XGC},
author = {Merlo, G. and Dominski, J. and Bhattacharjee, A. and Chang, C. S. and Jenko, F. and Ku, S. and Lanti, E. and Parker, S.},
abstractNote = {A detailed cross-verification between two global gyrokinetic codes, the core continuum code GENE and the edge particle-in-cell code XGC, for the linear and nonlinear simulations of ion-temperature-gradient modes is carried out. With the recent developments in the edge gyrokinetics, it may be feasible someday to describe the whole tokamak plasma on turbulence timescales using a coupled gyrokinetic simulation model. Before pursuing this, the core code (GENE) and the edge code (XGC) must be carefully benchmarked with each other. The present verification provides a solid basis for future code coupling research. Also included in the benchmarking is the global particle-in-cell code ORB5, to raise the confidence in the quality of the obtained results. An excellent agreement between all three codes is obtained. Lastly, in order to facilitate a benchmark framework for other codes, we make a specific effort to provide all the relevant input parameters and precise details for each code.},
doi = {10.1063/1.5036563},
journal = {Physics of Plasmas},
number = 6,
volume = 25,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Measurements of the cross-phase angle between density and electron temperature fluctuations and comparison with gyrokinetic simulations
journal, May 2010

  • White, A. E.; Peebles, W. A.; Rhodes, T. L.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3323084

Intercode comparison of gyrokinetic global electromagnetic modes
journal, July 2016

  • Görler, T.; Tronko, N.; Hornsby, W. A.
  • Physics of Plasmas, Vol. 23, Issue 7
  • DOI: 10.1063/1.4954915

A fast low-to-high confinement mode bifurcation dynamics in the boundary-plasma gyrokinetic code XGC1
journal, May 2018

  • Ku, S.; Chang, C. S.; Hager, R.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020792

Benchmarking the GENE and GYRO codes through the relative roles of electromagnetic and E   ×   B stabilization in JET high-performance discharges
journal, November 2016


On the effects of the equilibrium model in gyrokinetic simulations: from s- α to diverted MHD equilibrium
journal, November 2010


The global version of the gyrokinetic turbulence code GENE
journal, August 2011

  • Görler, T.; Lapillonne, X.; Brunner, S.
  • Journal of Computational Physics, Vol. 230, Issue 18
  • DOI: 10.1016/j.jcp.2011.05.034

Gyrokinetic simulations of turbulent transport
journal, March 2010


X mode Doppler reflectometry k -spectral measurements in ASDEX Upgrade: experiments and simulations
journal, May 2017

  • Lechte, C.; Conway, G. D.; Görler, T.
  • Plasma Physics and Controlled Fusion, Vol. 59, Issue 7
  • DOI: 10.1088/1361-6587/aa6fe7

Electron temperature gradient driven turbulence
journal, May 2000

  • Jenko, F.; Dorland, W.; Kotschenreuther, M.
  • Physics of Plasmas, Vol. 7, Issue 5
  • DOI: 10.1063/1.874014

On the validity of the local diffusive paradigm in turbulent plasma transport
journal, August 2010


Nonlinear quasisteady state benchmark of global gyrokinetic codes
journal, November 2010

  • Lapillonne, X.; McMillan, B. F.; Görler, T.
  • Physics of Plasmas, Vol. 17, Issue 11
  • DOI: 10.1063/1.3518118

Large-scale gyrokinetic turbulence simulations: Effects of profile variation
journal, May 1999

  • Parker, Scott E.; Kim, Charlson; Chen, Yang
  • Physics of Plasmas, Vol. 6, Issue 5
  • DOI: 10.1063/1.873429

Foundations of nonlinear gyrokinetic theory
journal, April 2007


A global collisionless PIC code in magnetic coordinates
journal, September 2007


Verification of Gyrokinetic codes: Theoretical background and applications
journal, May 2017

  • Tronko, Natalia; Bottino, Alberto; Görler, Tobias
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982689

A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma
journal, June 2016


Verification of electromagnetic fluid-kinetic hybrid electron model in global gyrokinetic particle simulation
journal, March 2013


Padé approximation of the adiabatic electron contribution to the gyrokinetic quasi-neutrality equation in the ORB5 code
journal, November 2016


Gyrokinetic particle simulation model
journal, September 1987


Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod
journal, May 2017

  • Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977466

What happens to full-f gyrokinetic transport and turbulence in a toroidal wedge simulation?
journal, January 2017

  • Kim, Kyuho; Chang, C. S.; Seo, Janghoon
  • Physics of Plasmas, Vol. 24, Issue 1
  • DOI: 10.1063/1.4974777

System Size Effects on Gyrokinetic Turbulence
journal, October 2010


Comparisons and physics basis of tokamak transport models and turbulence simulations
journal, March 2000

  • Dimits, A. M.; Bateman, G.; Beer, M. A.
  • Physics of Plasmas, Vol. 7, Issue 3
  • DOI: 10.1063/1.873896

Verification of long wavelength electromagnetic modes with a gyrokinetic-fluid hybrid model in the XGC code
journal, May 2017

  • Hager, Robert; Lang, Jianying; Chang, C. S.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4983320

Linear multispecies gyrokinetic flux tube benchmarks in shaped tokamak plasmas
journal, March 2016

  • Merlo, G.; Sauter, O.; Brunner, S.
  • Physics of Plasmas, Vol. 23, Issue 3
  • DOI: 10.1063/1.4942539

    Works referencing / citing this record:

    Validation of nonlinear gyrokinetic transport models using turbulence measurements
    journal, February 2019


    Verification of the global gyrokinetic stellarator code XGC-S for linear ion temperature gradient driven modes
    journal, August 2019

    • Cole, M. D. J.; Hager, R.; Moritaka, T.
    • Physics of Plasmas, Vol. 26, Issue 8
    • DOI: 10.1063/1.5109259

    Cross-verification of neoclassical transport solutions from XGCa against NEO
    journal, October 2019

    • Hager, R.; Dominski, J.; Chang, C. S.
    • Physics of Plasmas, Vol. 26, Issue 10
    • DOI: 10.1063/1.5121308