skip to main content

DOE PAGESDOE PAGES

Title: An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage

Nanoporous adsorbents are a diverse category of solid-state materials that hold considerable promise for vehicular hydrogen storage. Although impressive storage capacities have been demonstrated for several materials, particularly at cryogenic temperatures, materials meeting all of the targets established by the U.S. Department of Energy have yet to be identified. Here in this Perspective, we provide an overview of the major known and proposed strategies for hydrogen adsorbents, with the aim of guiding ongoing research as well as future new storage concepts. The discussion of each strategy includes current relevant literature, strengths and weaknesses, and outstanding challenges that preclude implementation. We consider in particular metal–organic frameworks (MOFs), including surface area/volume tailoring, open metal sites, and the binding of multiple H 2 molecules to a single metal site. Two related classes of porous framework materials, covalent organic frameworks (COFs) and porous aromatic frameworks (PAFs), are also discussed, as are graphene and graphene oxide and doped porous carbons. We additionally introduce criteria for evaluating the merits of a particular materials design strategy. Computation has become an important tool in the discovery of new storage materials, and a brief introduction to the benefits and limitations of computational predictions of H 2 physisorption is thereforemore » presented. In conclusion, considerations for the synthesis and characterization of hydrogen storage adsorbents are discussed.« less
Authors:
ORCiD logo [1] ;  [2] ;  [3] ; ORCiD logo [4] ;  [5] ;  [6] ;  [7] ; ORCiD logo [8] ;  [6] ; ORCiD logo [9] ;  [10] ;  [5] ; ORCiD logo [11] ; ORCiD logo [12] ;  [13] ; ORCiD logo [5] ;  [14] ; ORCiD logo [4] ; ORCiD logo [1] ; ORCiD logo [15] more »; ORCiD logo [13] ; ORCiD logo [14] « less
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States). Energy & Transport Technology Center
  2. US Dept. of Energy Office of Energy Efficiency and Renewable Energy, Washington, DC (United States). Fuel Cell Technologies Office; Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)
  3. Colorado School of Mines, Golden, CO (United States). Dept. of Chemistry; National Renewable Energy Lab. (NREL), Golden, CO (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States). Mechanical Engineering Dept.
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  6. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division
  7. Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering
  8. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
  9. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Division
  10. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
  11. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  12. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division; Univ. of California, Berkeley, CA (United States). Dept. of Chemical and Biomolecular Engineering
  13. Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
  14. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  15. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Foundry
Publication Date:
Report Number(s):
SAND-2018-4538J
Journal ID: ISSN 1754-5692; 663939
Grant/Contract Number:
AC04-94AL85000; AC05-76RL01830; AC36-08-GO28308; AC02-05CH11231; AC52-07NA27344; EE0007046; EE0008093; AC02-06CH11357
Type:
Published Article
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 10; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Fuel Cell Technologies Office (EE-3F)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 08 HYDROGEN
OSTI Identifier:
1464284
Alternate Identifier(s):
OSTI ID: 1467459

Allendorf, Mark D., Hulvey, Zeric, Gennett, Thomas, Ahmed, Alauddin, Autrey, Tom, Camp, Jeffrey, Seon Cho, Eun, Furukawa, Hiroyasu, Haranczyk, Maciej, Head-Gordon, Martin, Jeong, Sohee, Karkamkar, Abhi, Liu, Di-Jia, Long, Jeffrey R., Meihaus, Katie R., Nayyar, Iffat H., Nazarov, Roman, Siegel, Donald J., Stavila, Vitalie, Urban, Jeffrey J., Veccham, Srimukh Prasad, and Wood, Brandon C.. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. United States: N. p., Web. doi:10.1039/C8EE01085D.
Allendorf, Mark D., Hulvey, Zeric, Gennett, Thomas, Ahmed, Alauddin, Autrey, Tom, Camp, Jeffrey, Seon Cho, Eun, Furukawa, Hiroyasu, Haranczyk, Maciej, Head-Gordon, Martin, Jeong, Sohee, Karkamkar, Abhi, Liu, Di-Jia, Long, Jeffrey R., Meihaus, Katie R., Nayyar, Iffat H., Nazarov, Roman, Siegel, Donald J., Stavila, Vitalie, Urban, Jeffrey J., Veccham, Srimukh Prasad, & Wood, Brandon C.. An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. United States. doi:10.1039/C8EE01085D.
Allendorf, Mark D., Hulvey, Zeric, Gennett, Thomas, Ahmed, Alauddin, Autrey, Tom, Camp, Jeffrey, Seon Cho, Eun, Furukawa, Hiroyasu, Haranczyk, Maciej, Head-Gordon, Martin, Jeong, Sohee, Karkamkar, Abhi, Liu, Di-Jia, Long, Jeffrey R., Meihaus, Katie R., Nayyar, Iffat H., Nazarov, Roman, Siegel, Donald J., Stavila, Vitalie, Urban, Jeffrey J., Veccham, Srimukh Prasad, and Wood, Brandon C.. 2018. "An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage". United States. doi:10.1039/C8EE01085D.
@article{osti_1464284,
title = {An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage},
author = {Allendorf, Mark D. and Hulvey, Zeric and Gennett, Thomas and Ahmed, Alauddin and Autrey, Tom and Camp, Jeffrey and Seon Cho, Eun and Furukawa, Hiroyasu and Haranczyk, Maciej and Head-Gordon, Martin and Jeong, Sohee and Karkamkar, Abhi and Liu, Di-Jia and Long, Jeffrey R. and Meihaus, Katie R. and Nayyar, Iffat H. and Nazarov, Roman and Siegel, Donald J. and Stavila, Vitalie and Urban, Jeffrey J. and Veccham, Srimukh Prasad and Wood, Brandon C.},
abstractNote = {Nanoporous adsorbents are a diverse category of solid-state materials that hold considerable promise for vehicular hydrogen storage. Although impressive storage capacities have been demonstrated for several materials, particularly at cryogenic temperatures, materials meeting all of the targets established by the U.S. Department of Energy have yet to be identified. Here in this Perspective, we provide an overview of the major known and proposed strategies for hydrogen adsorbents, with the aim of guiding ongoing research as well as future new storage concepts. The discussion of each strategy includes current relevant literature, strengths and weaknesses, and outstanding challenges that preclude implementation. We consider in particular metal–organic frameworks (MOFs), including surface area/volume tailoring, open metal sites, and the binding of multiple H2 molecules to a single metal site. Two related classes of porous framework materials, covalent organic frameworks (COFs) and porous aromatic frameworks (PAFs), are also discussed, as are graphene and graphene oxide and doped porous carbons. We additionally introduce criteria for evaluating the merits of a particular materials design strategy. Computation has become an important tool in the discovery of new storage materials, and a brief introduction to the benefits and limitations of computational predictions of H2 physisorption is therefore presented. In conclusion, considerations for the synthesis and characterization of hydrogen storage adsorbents are discussed.},
doi = {10.1039/C8EE01085D},
journal = {Energy & Environmental Science},
number = 10,
volume = 11,
place = {United States},
year = {2018},
month = {8}
}

Works referenced in this record:

M2(m-dobdc) (M = Mg, Mn, Fe, Co, Ni) Metal–Organic Frameworks Exhibiting Increased Charge Density and Enhanced H2 Binding at the Open Metal Sites
journal, August 2014
  • Kapelewski, Matthew T.; Geier, Stephen J.; Hudson, Matthew R.
  • Journal of the American Chemical Society, Vol. 136, Issue 34, p. 12119-12129
  • DOI: 10.1021/ja506230r

DREIDING: a generic force field for molecular simulations
journal, December 1990
  • Mayo, Stephen L.; Olafson, Barry D.; Goddard, William A.
  • The Journal of Physical Chemistry, Vol. 94, Issue 26, p. 8897-8909
  • DOI: 10.1021/j100389a010

Designed Synthesis of 3D Covalent Organic Frameworks
journal, April 2007
  • El-Kaderi, Hani M.; Hunt, Joseph R.; Mendoza-Cortes, Jose L.
  • Science, Vol. 316, Issue 5822, p. 268-272
  • DOI: 10.1126/science.1139915

Cu2(ATC)·6H2O:  Design of Open Metal Sites in Porous Metal−Organic Crystals (ATC:  1,3,5,7-Adamantane Tetracarboxylate)
journal, November 2000
  • Chen, Banglin; Eddaoudi, M.; Reineke, T. M.
  • Journal of the American Chemical Society, Vol. 122, Issue 46, p. 11559-11560
  • DOI: 10.1021/ja003159k

Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
journal, November 2010
  • Lu, Weigang; Yuan, Daqiang; Zhao, Dan
  • Chemistry of Materials, Vol. 22, Issue 21, p. 5964-5972
  • DOI: 10.1021/cm1021068

Hydrogen Storage in Metal�Organic Frameworks
journal, September 2011
  • Suh, Myunghyun Paik; Park, Hye Jeong; Prasad, Thazhe Kootteri
  • Chemical Reviews, Vol. 112, Issue 2, p. 782-835
  • DOI: 10.1021/cr200274s

A Crystalline Imine-Linked 3-D Porous Covalent Organic Framework
journal, April 2009
  • Uribe-Romo, Fernando J.; Hunt, Joseph R.; Furukawa, Hiroyasu
  • Journal of the American Chemical Society, Vol. 131, Issue 13, p. 4570-4571
  • DOI: 10.1021/ja8096256

Enhanced H2 Adsorption in Isostructural Metal?Organic Frameworks with Open Metal Sites: Strong Dependence of the Binding Strength on Metal Ions
journal, November 2008
  • Zhou, Wei; Wu, Hui; Yildirim, Taner
  • Journal of the American Chemical Society, Vol. 130, Issue 46, p. 15268-15269
  • DOI: 10.1021/ja807023q

Reticular Synthesis of Microporous and Mesoporous 2D Covalent Organic Frameworks
journal, October 2007
  • C�t�, Adrien P.; El-Kaderi, Hani M.; Furukawa, Hiroyasu
  • Journal of the American Chemical Society, Vol. 129, Issue 43, p. 12914-12915
  • DOI: 10.1021/ja0751781

A Crystalline Mesoporous Coordination Copolymer with High Microporosity
journal, January 2008
  • Koh, Kyoungmoo; Wong-Foy, Antek?G.; Matzger, Adam?J.
  • Angewandte Chemie International Edition, Vol. 47, Issue 4, p. 677-680
  • DOI: 10.1002/anie.200705020

Reticular Synthesis of Covalent Organic Borosilicate Frameworks
journal, September 2008
  • Hunt, Joseph R.; Doonan, Christian J.; LeVangie, James D.
  • Journal of the American Chemical Society, Vol. 130, Issue 36, p. 11872-11873
  • DOI: 10.1021/ja805064f

Postsynthetic Methods for the Functionalization of Metal�Organic Frameworks
journal, September 2011
  • Cohen, Seth M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 970-1000
  • DOI: 10.1021/cr200179u

Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications
journal, July 2009
  • Furukawa, Hiroyasu; Yaghi, Omar M.
  • Journal of the American Chemical Society, Vol. 131, Issue 25, p. 8875-8883
  • DOI: 10.1021/ja9015765

Isoreticular Metalation of Metal?Organic Frameworks
journal, July 2009
  • Doonan, Christian J.; Morris, William; Furukawa, Hiroyasu
  • Journal of the American Chemical Society, Vol. 131, Issue 27, p. 9492-9493
  • DOI: 10.1021/ja903251e

De novo synthesis of a metal�organic framework material featuring ultrahigh surface area and gas storage capacities
journal, September 2010
  • Farha, Omar K.; �zg�r Yazayd?n, A.; Eryazici, Ibrahim
  • Nature Chemistry, Vol. 2, Issue 11, p. 944-948
  • DOI: 10.1038/nchem.834

Supercritical Processing as a Route to High Internal Surface Areas and Permanent Microporosity in Metal?Organic Framework Materials
journal, January 2009
  • Nelson, Andrew P.; Farha, Omar K.; Mulfort, Karen L.
  • Journal of the American Chemical Society, Vol. 131, Issue 2, p. 458-460
  • DOI: 10.1021/ja808853q

High H2 Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites
journal, July 2005
  • Chen, Banglin; Ockwig, Nathan W.; Millward, Andrew R.
  • Angewandte Chemie International Edition, Vol. 44, Issue 30, p. 4745-4749
  • DOI: 10.1002/anie.200462787

Impact of Metal and Anion Substitutions on the Hydrogen Storage Properties of M-BTT Metal�Organic Frameworks
journal, January 2013
  • Sumida, Kenji; St�ck, David; Mino, Lorenzo
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 1083-1091
  • DOI: 10.1021/ja310173e

Synthesis, Structure, and Metalation of Two New Highly Porous Zirconium Metal�Organic Frameworks
journal, June 2012
  • Morris, William; Volosskiy, Boris; Demir, Selcuk
  • Inorganic Chemistry, Vol. 51, Issue 12, p. 6443-6445
  • DOI: 10.1021/ic300825s

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992
  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

Role of Exposed Metal Sites in Hydrogen Storage in MOFs
journal, July 2008
  • Vitillo, Jenny G.; Regli, Laura; Chavan, Sachin
  • Journal of the American Chemical Society, Vol. 130, Issue 26, p. 8386-8396
  • DOI: 10.1021/ja8007159

Evaluating metal–organic frameworks for natural gas storage
journal, January 2014
  • Mason, Jarad A.; Veenstra, Mike; Long, Jeffrey R.
  • Chemical Science, Vol. 5, Issue 1, p. 32-51
  • DOI: 10.1039/C3SC52633J

Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal�Organic Frameworks
journal, September 2011
  • Getman, Rachel B.; Bae, Youn-Sang; Wilmer, Christopher E.
  • Chemical Reviews, Vol. 112, Issue 2, p. 703-723
  • DOI: 10.1021/cr200217c

Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area
journal, November 2009
  • Ben, Teng; Ren, Hao; Ma, Shengqian
  • Angewandte Chemie International Edition, Vol. 48, Issue 50, p. 9457-9460
  • DOI: 10.1002/anie.200904637

Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)�a metal�organic framework with open Mg2+ adsorption sites
journal, January 2011
  • Sumida, Kenji; Brown, Craig M.; Herm, Zoey R.
  • Chemical Communications, Vol. 47, Issue 4, p. 1157-1159
  • DOI: 10.1039/C0CC03453C

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006
  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Hydrogen adsorption in different carbon nanostructures
journal, August 2005

Hydrogen Storage in Microporous Metal-Organic Frameworks
journal, May 2003
  • Rosi, Nathaniel L.; Eckert, Juergen; Eddaoudi, Mohamed
  • Science, Vol. 300, Issue 5622, p. 1127-1129
  • DOI: 10.1126/science.1083440

Porous, Crystalline, Covalent Organic Frameworks
journal, November 2005
  • C�t�, Adrien P.; Benin, Annabelle I.; Ockwig, Nathan W.
  • Science, Vol. 310, Issue 5751, p. 1166-1170
  • DOI: 10.1126/science.1120411

Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites
journal, August 2008
  • Dinca?, Mircea; Long, Jeffrey?R.
  • Angewandte Chemie International Edition, Vol. 47, Issue 36, p. 6766-6779
  • DOI: 10.1002/anie.200801163

Metal Insertion in a Microporous Metal?Organic Framework Lined with 2,2?-Bipyridine
journal, October 2010
  • Bloch, Eric D.; Britt, David; Lee, Chain
  • Journal of the American Chemical Society, Vol. 132, Issue 41, p. 14382-14384
  • DOI: 10.1021/ja106935d

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013
  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444