skip to main content

DOE PAGESDOE PAGES

This content will become publicly available on June 21, 2019

Title: Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices

As a first step to porting scanning tunneling microscopy methods of atomic-precision fabrication to a strained-Si/SiGe platform, we demonstrate post-growth P atomic-layer doping of SiGe heterostructures. To preserve the substrate structure and elastic state, we use a T ≤ 800 °C process to prepare clean Si 0.86 Ge 0.14 surfaces suitable for atomic-precision fabrication. P-saturated atomic-layer doping is incorporated and capped with epitaxial Si under a thermal budget compatible with atomic-precision fabrication. Hall measurements at T = 0.3 K show that the doped heterostructure has R $$\square$$ = 570 ± 30 Ω , yielding an electron density n e = 2.1 ± 0.1 × 10 14 cm -2 and mobility μ e = 52 ± 3 cm 2 V -1 s -1, similar to saturated atomic-layer doping in pure Si and Ge. The magnitude of μ e and the complete absence of Shubnikov–de Haas oscillations in magnetotransport measurements indicate that electrons are overwhelmingly localized in the donor layer, and not within a nearby buried Si well. Finally, this conclusion is supported by self-consistent Schrödinger-Poisson calculations that predict electron occupation primarily in the donor layer.
Authors:
 [1] ;  [2] ;  [3] ;  [3] ;  [4] ;  [4] ;  [4] ;  [4] ;  [1] ;  [1] ;  [3] ;  [3]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Integrated Nanotechnologies
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Center for Computing Research
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  4. National Taiwan Univ., Taipei (Taiwan). Dept. of Electrical Engineering and Graduate Inst. of Electronic Engineering; National Nano Device Laboratories, Hsinchu (Taiwan)
Publication Date:
Report Number(s):
SAND-2017-11274J
Journal ID: ISSN 2475-9953; PRMHAR; 663113
Grant/Contract Number:
AC04-94AL85000; NA0003525
Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 6; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Research Org:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
OSTI Identifier:
1464188
Alternate Identifier(s):
OSTI ID: 1456270

Bussmann, E., Gamble, John King, Koepke, J. C., Laroche, D., Huang, S. H., Chuang, Y., Li, J. -Y., Liu, C. W., Swartzentruber, B. S., Lilly, M. P., Carroll, M. S., and Lu, T. -M.. Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices. United States: N. p., Web. doi:10.1103/PhysRevMaterials.2.066004.
Bussmann, E., Gamble, John King, Koepke, J. C., Laroche, D., Huang, S. H., Chuang, Y., Li, J. -Y., Liu, C. W., Swartzentruber, B. S., Lilly, M. P., Carroll, M. S., & Lu, T. -M.. Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices. United States. doi:10.1103/PhysRevMaterials.2.066004.
Bussmann, E., Gamble, John King, Koepke, J. C., Laroche, D., Huang, S. H., Chuang, Y., Li, J. -Y., Liu, C. W., Swartzentruber, B. S., Lilly, M. P., Carroll, M. S., and Lu, T. -M.. 2018. "Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices". United States. doi:10.1103/PhysRevMaterials.2.066004.
@article{osti_1464188,
title = {Atomic-layer doping of SiGe heterostructures for atomic-precision donor devices},
author = {Bussmann, E. and Gamble, John King and Koepke, J. C. and Laroche, D. and Huang, S. H. and Chuang, Y. and Li, J. -Y. and Liu, C. W. and Swartzentruber, B. S. and Lilly, M. P. and Carroll, M. S. and Lu, T. -M.},
abstractNote = {As a first step to porting scanning tunneling microscopy methods of atomic-precision fabrication to a strained-Si/SiGe platform, we demonstrate post-growth P atomic-layer doping of SiGe heterostructures. To preserve the substrate structure and elastic state, we use a T ≤ 800 °C process to prepare clean Si0.86 Ge0.14 surfaces suitable for atomic-precision fabrication. P-saturated atomic-layer doping is incorporated and capped with epitaxial Si under a thermal budget compatible with atomic-precision fabrication. Hall measurements at T = 0.3 K show that the doped heterostructure has R $\square$ = 570 ± 30 Ω , yielding an electron density ne = 2.1 ± 0.1 × 1014 cm-2 and mobility μe = 52 ± 3 cm2 V-1 s-1, similar to saturated atomic-layer doping in pure Si and Ge. The magnitude of μ e and the complete absence of Shubnikov–de Haas oscillations in magnetotransport measurements indicate that electrons are overwhelmingly localized in the donor layer, and not within a nearby buried Si well. Finally, this conclusion is supported by self-consistent Schrödinger-Poisson calculations that predict electron occupation primarily in the donor layer.},
doi = {10.1103/PhysRevMaterials.2.066004},
journal = {Physical Review Materials},
number = 6,
volume = 2,
place = {United States},
year = {2018},
month = {6}
}